Effects of Algae-Daphnia Systems on Regulation of Effluent from Pacific White Shrimp Litopenaeus vannamei Culture and Growth of Microalgae and Water Fleas Daphnia magna
LIU Mei, YUAN Julin, NI Meng, LIAN Qingping, GUO Aihuan, GU Zhimin
Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
Abstract:A total of 5000 mL of sterilized water in Pacific white shrimp Litopenaeus vannamei rearing ponds was held in a 5000 mL autoclaved beaker, divided into 10 groups, and inoculated with various combinations of algae and water fleas Daphnia magna with initial alga inoculation density of 1×108 cell/mL and water fleas density of 1 individual/L, namely, Chlorella pyrenoidosa group (C1), C. pyrenoidosa + D. magna group (C2), Chlamydomonas sp. group (C3), Chlamydomonas sp. + D. magna group (C4), Cryptomonas obovat group (C5), C. obovat + D. magna group (C6), C. pyrenoidosa + Chlamydomonas sp. group (C7), C. pyrenoidosa + Chlamydomonas sp. + D. magna group (C8), Chlamydomonas sp. + C. obovat group (C9), and Chlamydomonas sp. + C. obovat + D. magna group (C10), with 3 parallel groups. The pH value, and contents of dissolved oxygen (DO), total nitrogen (TN), ammonia nitrogen, nitrate nitrogen, nitrite nitrogen, total phosphorus (TP) and chlorophyll a were measured every 3 days to investigate the effect of the combined system on the purification of the water in Pacific white shrimp culture and growth of both the shrimp and the algae. It was found that both microalgae and D. magna grew normally in the treatment groups, with good water purification effect of the alga-water fleas combination system, and in particular, the removal rates of 82% for nitrate, 77% for nitrite and 99% for ammonia nitrogen at the end of the experiment. There was poor growth rate in polycultured microalgae than that in monoculture microalgae, with the maximal relative growth rates of 27.7% in C. pyrenoidosa and 26.9% in Chlamydomonas sp.. C. pyrenoidosa was the most favorable for the growth and reproduction of D. magna which was increased from 5 to 88 in number at the end of the experiment, followed by Chlamydomonas sp. (80) and C. obovata (59). In the early stage of culture, D. magna promoted the growth of microalgae, and later prevented the excessive propagation of microalgae, so as to maintain the stability of beneficial algae phase for a long time due to the increase in number of water fleas feeding pressure. Thus, inoculation of C. pyrenoidosa, Chlamydomonas sp. and D. magna were beneficial to the regulation of aquaculture water environment and to maintain the stability of microalgae phase.
刘梅,原居林,倪蒙,练青平,郭爱环,顾志敏. 藻—溞系统对凡纳滨对虾养殖水体调控效果的研究[J]. 水产科学, 2021, 40(2): 188-195.
LIU Mei, YUAN Julin, NI Meng, LIAN Qingping, GUO Aihuan, GU Zhimin. Effects of Algae-Daphnia Systems on Regulation of Effluent from Pacific White Shrimp Litopenaeus vannamei Culture and Growth of Microalgae and Water Fleas Daphnia magna. 水产科学, 2021, 40(2): 188-195.
[1]黄翔鹄,李长玲,郑莲,等.固定化微藻对虾池弧菌数量动态的影响[J].水生生物学报,2005,29(6):684-688. [2]张继平,郭照良.小球藻对降低凡纳滨对虾养殖水体中亚硝酸盐氮含量的研究[J].水产科学,2006,25(10):517-519. [3]Gao J F, Zuo H L, Yang L W, et al. Long-term influence of cyanobacterial bloom on the immune system of Litopenaeus vannamei[J].Fish & Shellfish Immunology,2017,61:79-85. [4]刘梅,原居林,何海生,等.微藻在南美白对虾养殖废水中的生长及净化效果[J].应用与环境生物学报,2018,24(4):866-872. [5]刘盼,贾成霞,杨慕,等.2种微藻对养殖水体中氨氮和亚硝态氮的净化作用[J].水产科学,2018,37(3):389-393. [6]吴定心.微生物制剂对南美白对虾养殖体系微生态的影响及其与藻类关系的研究[D].武汉:华中农业大学,2016. [7]Lemonnier H, Hochard S, Nakagawa K, et al. Response of phytoplankton to organic enrichment and shrimp activity in tropical aquaculture ponds:a mesocosm study[J].Aquatic Microbial Ecology,2017,80(2):105-122. [8]张才学,劳赞,廖宝娇,等.珠海地区凡纳滨对虾淡水养殖池浮游植物群落的演替[J].湛江海洋大学学报,2006,26(4):35-41. [9]张瑜斌,龚玉艳,陈长平,等.高位虾池养殖过程浮游植物群落的演替[J].生态学杂志,2009,28(12):2532-2540. [10]彭聪聪,李卓佳,曹煜成,等.粤西凡纳滨对虾海水滩涂养殖池塘浮游微藻群落结构特征[J].渔业科学进展,2011,32(4):117-125. [11]吴攀,邓建明,秦伯强,等.水温和营养盐增加对太湖冬、春季节藻类生长的影响[J].环境科学研究,2013,26(10):1064-1071. [12]靳萍,徐婷婷,杨佩昀,等.磷浓度对小环藻、大型溞和金鱼藻三者相互作用的影响[J].水生生物学报,2016,40(1):105-110. [13]史文,刘其根,吴晶,等.不同藻类对大型溞存活和生殖的影响[J].生态学杂志,2009,28(6):1128-1133. [14]姜小玉,赵闪闪,褚一凡,等.氮浓度对铜绿微囊藻、大型溞和金鱼藻三者相互作用的影响[J].水生生物学报,2019,43(2):439-447. [15]Beisner B E. Herbivory in variable environments:an experimental test of the effects of vertical mixing and Daphnia on phytoplankton community structure[J].Canadian Journal of Fisheries and Aquatic Sciences,2001,58(7):1371-1379. [16]Sarnelle O. Daphnia as keystone predators:effects on phytoplankton diversity and grazing resistance[J].Journal of Plankton Research,2005,27(12):1229-1238. [17]欧阳峥嵘,温小斌,耿亚红,等.光照强度、温度、pH、盐度对蛋白核小球藻(Chlorella)光合作用的影响[J].武汉植物学研究,2010,28(1):49-55. [18]刘霞,陆晓华,陈宇炜.太湖浮游硅藻时空演化与环境因子的关系[J].环境科学学报,2012,32(4):821-827. [19]邱昌恩,况琪军,刘国祥,等.不同氮浓度对绿球藻生长及生理特性的影响[J].中国环境科学,2005,25(4):408-411. [20]杨坤,李静,赵秀侠,等.栅藻和小球藻在4种养殖废水中的生长及净化效果对比研究[J].环境工程学报,2017,11(7):4411-4418. [21]杨洋,王梦梦,潘宏博,等.不同密度的大型溞对浮游植物群落的影响[J].上海海洋大学学报,2017,26(3):406-414. [22]张曼,张河长,宋东蓥,等.富营养水体大型溞(Daphnia magna)的种群数量对浮游植物的控制效应[J].生态科学,2015,34(2):76-81. [23]王丽娟,成永旭,吴旭干,等.绿色微囊藻等不同食物对大型溞生长和脂类成分的影响[J].水产学报,2006,30(6):843-847. [24]刘林林,黄旭雄,危立坤,等.15株微藻对猪场养殖污水中氮磷的净化及其细胞营养分析[J].环境科学学报,2014,34(8):1986-1994. [25]陈春云,庄源益,方圣琼.蛋白核小球藻对养殖废水中N、P的去除研究[J].海洋环境科学,2009,28(1):9-11.