1. Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and RuralAffairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea FisheriesResearch Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; 2. College ofFisheries, Tianjin Agricultural University, Tianjin 300384, China; 3. Shenzhen Academy ofInspection and Quarantine, Shenzhen 518010, China
Abstract:The changes in Na+/K+-ATPase and Ca2+-ATPase activities in gill and the contents of free amino acid (FAA) in muscle and gill were monitored in Pacific white shrimp Litopenaeus vannamei with body weight of (6.77±0.51) g reared in 200 L fiberglass barrels at initial stocking density of 50 per barrel under two temperatures (normally 30 ℃ and acute increase from 30 ℃ to 33 ℃ within 1 h) × 4 ammonia nitrogen concentrations (0, 5, 15, and 25 mg/L) adjusted with ammonium chloride solution for 72 h to evaluate the effects of ammonia-nitrogen stress on the physiological osmoregulation of Pacific white shrimp under acute warming temperature. The results showed that the activities of Na+/K+-ATPase and Ca2+-ATPase were found to be significantly increased in 25 mg/L and 5 mg/L ammonia groups at 30 ℃(P<0.05), significant increase in activities of Na+/K+-ATPaes and Ca2+-ATPase in all ammonia groups at 33 ℃(P<0.05). In the same ammonia concentration, there were significant differences in the activities of Na+/K+-ATPase and Ca2+-ATPase between 30 ℃ and 33 ℃ groups, significantly lower enzyme activity in the 33 ℃ group than that in the 30 ℃ group at 25 mg/L ammonia concentration (P<0.05). In gill and muscle, the total contents of FAA were significantly lower in the 33 ℃ group than that in 30 ℃ group at ammonia concentration of 15 mg/L and 25 mg/L (P<0.05). Under ammonia stress, alanine level in muscle was increased significantly in 30 ℃ and 33 ℃ groups with increasing ammonia concentration (P<0.05), and significantly higher at 33 ℃ than at 30 ℃ group (P<0.05).The findings indicated that ammonia stress sharply affected Na+/K+-ATPase and Ca2+-ATPase activities as well as the contents of FAA under acute warming temperature,leading to dysfunction of the physiological osmoregulation of Pacific white shrimp.
[1]Chang Z W, Chiang P C, Cheng W, et al. Impact of ammonia exposure on coagulation in white shrimp, Litopenaeus vannamei[J].Ecotoxicology and Environmental Safety,2015,118:98-102. [2]王梦杰,王海华,马本贺,等.氨氮对台湾泥鳅胚胎及卵黄囊期仔鱼的毒理效应[J].水产科学,2020,39(4):483-490. [3]唐首杰,刘辛宇,吴太淳,等.慢性氨氮胁迫对“新吉富”罗非鱼幼鱼生长及血清生化指标的影响[J].水产科学,2019,38(6):741-748. [4]Duan Y F, Liu Q S, Wang Y, et al. Impairment of the intestine barrier function in Litopenaeus vannamei exposed to ammonia and nitrite stress[J].Fish & Shellfish Immunology,2018,78:279-288. [5]Liang Z X, Liu R, Zhao D P, et al. Ammonia exposure induces oxidative stress, endoplasmic reticulum stress and apoptosis in hepatopancreas of Pacific white shrimp (Litopenaeus vannamei)[J].Fish & Shellfish Immunology,2016,54:523-528. [6]潘训彬,张秀霞,鲁耀鹏,等.氨氮和亚硝酸盐对红螯螯虾幼虾和亚成虾的急性毒力[J].生物安全学报,2017,26(4):316-322. [7]方金龙,王元,房文红,等.氨氮胁迫下白斑综合征病毒对凡纳滨对虾的致病性[J].南方水产科学,2017,13(4):52-58. [8]张传权.世界重要养殖品种:南美白对虾生物学简介[J].海洋科学,1990,14(3):69-73. [9]杨章武,卢小宁,郑雅友,等.温度对凡纳滨对虾幼体生长、变态和存活率的影响[J].台湾海峡,2011,30(1):81-85. [10]孙国铭,汤建华,仲霞铭.氨氮和亚硝酸氮对南美白对虾的毒性研究[J].水产养殖,2002,23(1):22-24. [11]Wang H, Shi W J, Wang L, et al. Optimal ammonia concentration for fertilization success in Pinctada martensii (Dunker) under the simultaneous influence of temperature and salinity[J].Aquaculture,2019,505:496-501. [12]Emerson K, Russo R C, Lund R E, et al. Aqueous ammonia equilibrium calculations:effect of pH and temperature[J].Journal of the Fisheries Research Board of Canada,1975,32(12):2379-2383. [13]Kir M, Kumlu M, Eroldoğan O T. Effects of temperature on acute toxicity of ammonia to Penaeus semisulcatus juveniles[J].Aquaculture,2004,241(1/2/3/4):479-489. [14]刘炎,姜东升,李雅洁,等.不同温度和pH下氨氮对河蚬和霍甫水丝蚓的急性毒性[J].环境科学研究,2014,27(9):1067-1073. [15]Lignot J H, Spanings-Pierrot C, Charmantier G. Osmoregulatory capacity as a tool in monitoring the physiological condition and the effect of stress in crustaceans[J].Aquaculture,2000,191(1/2/3):209-245. [16]Rainbow P S, Black W H. Effects of changes in salinity on the apparent water permeability of three crab species:Carcinus maenas, Eriocheir sinensis and Necora puber[J].Journal of Experimental Marine Biology and Ecology,2001,264(1):1-13. [17]龙晓文,吴仁福,侯文杰,等.水体盐度对雌性三疣梭子蟹生长、卵巢发育、渗透压调节、代谢和抗氧化能力的影响[J].水产学报,2019,43(8):1768-1780. [18]Wright P A, Wood C M. A new paradigm for ammonia excretion in aquatic animals:role of Rhesus (Rh) glycoproteins[J].Journal of Experimental Biology,2009,212(15):2303-2312. [19]常玉梅,何强,孙言春,等.碳酸盐碱度胁迫下瓦式雅罗鱼血浆游离氨基酸水平的变化[J].中国水产科学,2016,23(1):117-124. [20]Shrivastava J, Sinha A K, Datta S N, et al. Pre-acclimation to low ammonia improves ammonia handling in common carp (Cyprinus carpio) when exposed subsequently to high environmental ammonia[J].Aquatic Toxicology,2016,180:334-344. [21]Finn R N, Chauvigné F, Hlidberg J B, et al. The lineage-specific evolution of aquaporin gene clusters facilitated tetrapod terrestrial adaptation[J].PLoS One,2014,9(11):e113686. [22]赵超平,郭华阳,张健,等.卵形鲳鲹AQP1a分子特征及其对急性盐度胁迫的表达响应[J].南方水产科学,2018,14(4):56-65. [23]Pinto M R, Lucena M N, Faleiros R O, et al. Effects of ammonia stress in the Amazon river shrimp Macrobrachium amazonicum (Decapoda, Palaemonidae)[J].Aquatic Toxicology,2016,170:13-23. [24]张丹,王芳,董双林.周期性盐度波动对凡纳滨对虾游离氨基酸含量及渗透调节相关基因表达的影响[J].中国水产科学,2016,23(5):1130-1136. [25]Chen J M, Chen J C. Study on the free amino acid levels in the hemolymph, gill, hepatopancreas and muscle of Penaeus monodon exposed to elevated ambient ammonia[J].Aquatic Toxicology,2000,50(1/2):27-37. [26]Roesljadi G, Anderson J W, Petrocelli S R, et al. Osmoregulation of the grass shrimp Palaemonetes pugio exposed to polychlorinated biphenyls (PCBs).I. Effect on chloride and osmotic concentrations and chloride-and water-exchange kinetics[J].Marine Biology,1976,38(4):343-355. [27]杨月欣,王光亚.实用食物营养成分分析手册[M].北京:中国轻工业出版社,2002. [28]Funder J W. Mineralocorticoid receptors and hypertension[J].The Journal of Steroid Biochemistry and Molecular Biology,1995,53(1):53-55. [29]Romano N, Zeng C S. Survival, osmoregulation and ammonia-N excretion of blue swimmer crab, Portunus pelagicus, juveniles exposed to different ammonia-N and salinity combinations[J].Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology,2010,151(2):222-228. [30]Lee W C, Chen J C. Nitrogenous excretion and arginase specific activity of kuruma shrimp Marsupenaeus japonicus exposed to elevated ambient nitrite[J].Journal of Experimental Marine Biology and Ecology,2004,308(1):103-111. [31]张立田,戴习林,臧维玲,等.K+及主要离子间交互作用对凡纳滨对虾存活、生长及体内ATP酶的影响[J].广东农业科学,2012,39(6):116-120. [32]Pierce S K. Invertebrate cell volume control mechanisms:a coordinated use of intracellular amino acids and inorganic ions as osmotic solute[J].The Biological Bulletin,1982,163(3):405-419. [33]Via J. The effect of salinity on free amino acids in the prawn Palaemon elegans (Rathke)[J]. Archiv Fur Hydrobiologie,1989,115(1):125-135. [34]付萍,吕建建,刘萍,等.盐度胁迫对三疣梭子蟹(Portunus trituberculatus)鳃中游离氨基酸含量的影响[J].渔业科学进展,2016,37(5):122-126. [35]Harpaz S. L-Carnitine and its attributed functions in fish culture and nutrition—a review[J].Aquaculture,2005,249(1/2/3/4):3-21. [36]段亚飞,董宏标,王芸,等.鳗弧菌感染对斑节对虾免疫相关指标的影响[J].海洋科学,2015,39(9):44-50. [37]段亚飞,黄忠,林黑着,等. 深水网箱和池塘养殖凡纳滨对虾肌肉营养成分的比较分析[J]. 南方水产科学,2017,13(2):93-100. [38]Chen T, Wong N K, Jiang X, et al. Nitric oxide as an antimicrobial molecule against Vibrio harveyi infection in the hepatopancreas of Pacific white shrimp, Litopenaeus vannamei[J].Fish & Shellfish Immunology,2015,42(1):114-120. [39]Costas B, Conceição L E C, Aragão C, et al. Physiological responses of Senegalese sole (Solea senegalensis Kaup, 1858) after stress challenge:effects on non-specific immune parameters, plasma free amino acids and energy metabolism[J].Aquaculture,2011,316(1/2/3/4):68-76. [40]Zhou M, Wang A L, Xian J A. Variation of free amino acid and carbohydrate concentrations in white shrimp, Litopenaeus vannamei:effects of continuous cold stress[J].Aquaculture,2011,317(1/2/3/4):182-186.