Effects of Water Temperature and Macroalga Species on Feeding, Respirationand Ammonia Excretion of Sea Urchin Hemicentrotus pulcherrimus
SHI Jiageng1,2,3, FENG Yanwei1, JIANG Xu1, LIU Xiangquan1
1.Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Shandong Marine Resource andEnvironment Research Institute, Yantai 264006, China; 2.College of Fisheries and Life Science,Shanghai Ocean University, Shanghai 201306, China; 3.Shanghai Engineering Research Centerof Aquaculture, Shanghai Ocean University, Shanghai 201306, China
Abstract:In this study, sea urchin (Hemicentrotus pulcherrimus) with initial body weight of (0.55±0.16) g were reared in a 0.3 m×0.4 m×0.5 m white plastic tank at stocking density of 100 individuals per tank and overfed five common species of macoralgae Undaria pinnatifida, Leathesia difformis, Ulva pertusa, Enteromorpha intestinalis, and Chaetomorpha moniligera to study the feeding selectivity of sea urchin for algae by calculation of dry macoralgae weight. Also, the sea urchin with initial body weight of (0.67±0.32) g were reared at water temperature of 10.1, 15.6 and 20.3 ℃ and fed the same macroalgae for 2 days, and then 10 individuals of similar size sea urchin were placed in a 1 L sealed conical flask to determine the oxygen consumption and ammonia excretion rates. The results showed that the descending order feeding selectivity of sea urchin to five species of algae was expressed as U. pinnatifida, L. difformis, U. pertusa, E. intestinalis, and C. moniligera, prefering to U. pinnatifida. The daily relative food intake of the sea urchinwas significantly affected by temperature and macoralga species, the maximal value at water temperature of 15.6 ℃, and significantly higher in U.pinnatifida group than that in other groups(P<0.05), with the minimal in C.moniligera group. Oxygen consumption rate was shown to be increased gradually in the sea urchin with the increase in water temperature in different groups, the maximal in U.pertusa group at the same temperature. The ammonia excretion rate, however, was first increased and then decreased with the warming water temperature, the maximal at 15.6 ℃. The findings will provide a foundation for the ecological breeding of sea urchin and for the construction of a green integrated aquaculture model in sea cucumber ponds.
时嘉赓, 冯艳微, 姜绪, 刘相全. 水温和藻类对马粪海胆摄食、呼吸及排氨率的影响[J]. 水产科学, 2020, 39(1): 72-78.
SHI Jiageng, FENG Yanwei, JIANG Xu, LIU Xiangquan. Effects of Water Temperature and Macroalga Species on Feeding, Respirationand Ammonia Excretion of Sea Urchin Hemicentrotus pulcherrimus. 水产科学, 2020, 39(1): 72-78.
[1]廖玉麟. 海胆生物学概况[J]. 水产科学,1982,1(3):1-8. [2]尤凯,曾晓起,刘晖,等. 马粪海胆对环境变化的耐受性与选择性研究[J]. 应用生态学报,2003,14(3):409-412. [3]李元山,王远隆,李美芝. 马粪海胆的生态研究[J]. 海洋湖沼通报,1995,17(2):37-42. [4]宋肖跃. 绿潮藻类对典型海域底栖生境影响及其饵料价值研究[D]. 青岛:中国科学院大学(中国科学院海洋研究所),2018. [5]时嘉赓,冯艳微,刘刚,等.刺参养殖池塘中几种大型藻类的形态学与分子学鉴定[J]. 齐鲁渔业,2018,35(12):1-4. [6]冷晓飞,张艳,张伟杰,等. 不同性别马粪海胆壳形态性状对体质量的影响效果分析[J]. 水产科学,2016,35(4):359-363. [7]尤凯,曾晓起,陈大刚,等. 青岛近岸海域马粪海胆摄食的实验生态学研究[J]. 生态学报,2004,24(5):1006-1014. [8]曾晓起,尤凯,陈大刚. 马粪海胆的摄食与吸收的初步研究[J]. 海洋科学,1997,21(1):3-5. [9]戴超,王芳,房子恒,等. 温度对三疣梭子蟹呼吸代谢及其相关酶活力的影响[J]. 渔业科学进展,2014,35(2):90-96. [10]薛素燕,王金叶,李加琦,等. 温度对魁蚶能量代谢及抗氧化酶活性的影响[J].水产学报,2019,43(3):573-583. [11]张永泉,尹家胜,马波,等. 温度和流速对洛氏鱼岁呼吸代谢的影响[J]. 生态学报,2015,35(17):5606-5611. [12]任黎华,张继红,王文琪,等. 饵料对不同规格皱纹盘鲍能量收支的影响[J]. 渔业科学进展,2011,32(5):51-57. [13]潘哲,高永刚,高勤峰,等. 不同饵料对皱纹盘鲍生长和C、N、P营养要素收支的影响[J]. 中国海洋大学学报:自然科学版,2018,48(9):24-33. [14]冯雪,陈丕茂,秦传新,等. 温度和体重对南海野生紫海胆(Anthocidaris crassispina)呼吸代谢的影响[J]. 广东农业科学,2012,39(23):123-125,131. [15]赵艳,童圣英,张硕,等. 温度和盐度对虾夷马粪海胆耗氧率和排氨率的影响[J]. 中国水产科学,1998,5(4):34-37. [16]张鹏. 马粪海胆(Hemicentrotus pulcherrimus)早期发育及成体能量代谢的研究[D]. 青岛:中国海洋大学,2004. [17]Lyons D A, Scheibling R E. Differences in somatic and gonadic growth of sea urchins(Stronglyocentrotus droebachiensis) fed kelp (Laminaria longicruris) or the invasive alga Codium fragile ssp.tomentosoidesare related to energy acquisition[J]. Marine Biology (Berlin),2007,152(2):285-295. [18]常亚青,王子臣,王国江. 温度和藻类饵料对虾夷马粪海胆摄食及生长的影响[J]. 水产学报,1999,23(1):69-76. [19]聂永康,陈丕茂,周艳波,等.南方紫海胆摄食习性的初步研究[J]. 南方水产科学,2016,12(3):1-8. [20]黄继,顾忠旗,王春琳,等. 瘤荔枝螺对饵料的摄食选择性研究[J]. 中国农学通报,2019,35(15):138-141. [21]Lawrence J M. On the relationships between marine plants and sea urchins[J]. Oceanography and Marine Biology,1975(13):213-286. [22]Henry A V, Liebig J R, Carmichael W W, et al. Zebra mussel (Dreissena polymorpha) selective filtration promoted toxic Microcystis blooms in Saginaw Bay (Lake Huron) and Lake Erie [J]. Canadian Journal of Fisheries and Aquatic Sciences,2001,58(6):1208-1221. [23]Azad A K, Pearce C M, Mckinley R S. Effects of diet and temperature on ingestion, absorption, assimilation, gonad yield, and gonad quality of the purple sea urchin (Strongylocentrotus purpuratus)[J]. Aquaculture,2011,317(4):187-196. [24]黄国强,董双林,王芳,等. 中国明对虾能量代谢与生长的关系[J]. 水产学报,2006,30(1):56-62. [25]曾凡归. 黄斑蓝子鱼对大型海藻的选择性及其影响因素[D]. 汕头:汕头大学,2010. [26]王辉,强俊,王海贞,等. 温度与盐度对吉富品系尼罗罗非鱼幼鱼能量代谢的联合效应[J]. 中国水产科学,2012,19(1):51-61. [27]Ikeda T. Nutrition ecology of marine zooplankton[J]. Memoirs of the Faculty of Fisheries Hokkaido University,1974,22(1):1-77. [28]Conover R J, Corner E D S. Respiration and nitrogen excretion by some marine zooplankton in relation to their life cycles[J]. Journal of the Marine Biological Association of the United Kingdom,1968,48(1):49-75.