Abstract:The microflora community structure of sediment was monthly determined and analyzed in the samples of surface sediment (about 200 g) collected in three intensive grass carp (Ctenopharyngodon idellus) culture ponds in Jiangxiang Town, Nanchang County, Jiangxi Province from April to November 2018 by Peterson mud collector by the Illumina MiSeq sequencing technique. It was found that the microflora in all samples were classified into 54—60 phyla, among which Proteobacteria was the maximal dominant phyla, and the other dominant phyla were varied with months. There was no significant difference in the structure of microbial community in each month, while the main species were different in October from other months, with the peak of species abundance in May and November, and the maximal diversity in May. The core species included the anaerobic bacteria Geobacter and Anaeromyxobacter, and the facultative anaerobes Desulfatlans, Candidatus Competibacter, Dechloromonas and Crenothrix. These species bacteria reduced organic matter and sulfide under anaerobic or low dissolved oxygen conditions. Except in October, no significant difference in core species was observed in all months. However, the abundance of species is varied with month. In conclusion, the microflora structure in intensive grass carp culture pond sediments was relatively stable, with slow successive evolution, and increase in bottom dissolved oxygen level is the most important measure to repair the pond environment.
[1]周劲风,温琰茂,李耀初.养殖池塘底泥—水界面营养盐扩散的室内模拟研究:Ⅰ氮的扩散[J].农业环境科学学报,2006,25(3):786-791. [2]Hargreaves J A. Nitrogen biogeochemistry of aquaculture ponds[J].Aquaculture,1998,166(3/4):181-212. [3]程莹寅,吴山功,郑英珍,等.主养草鱼池塘底泥微生物群落多样性研究[J].淡水渔业,2011,41(6):43-49. [4]唐凌,邝声耀,刘兴国,等.不同养殖年份鱼塘底泥细菌群落多样性及演替分析[J].水产科学,2014,11(3):680-684. [5]Han S F, Liu Y C, Zhou Z G, et al. Analysis of bacterial diversity in the intestine of Ctenopharyngodon idellus based on 16S rDNA gene sequences[J].Aquaculture Res,2010,42(1):47-56. [6]唐凌,邝声耀.刘兴国,等.成都平原主养草鱼搭配鲫鱼池塘底泥中的细菌群落结构分析[J].安徽农业科学,2014,42(17):5477-5480. [7]张植强,魏南,余德光,等.高密度草鱼和乌鳢养殖围隔沉积物中微生物群落结构分析[J].南方水产科学,2016,2(12):21-29. [8]陈琼,李贵阳,罗坤,等.凡纳滨对虾(Litopenaeus vannamei)亲虾繁殖期水体微生物多样性[J].海洋与湖沼,2017,48(1):130-138. [9]Zhou H D, Jiang C L, Zhu L Q, et al. Impact of pond and fence aquaculture on reservoir environment[J].Water Sci Eng,2011,4(1):92-100. [10]史丽娜,可小丽,刘志刚,等.罗非鱼——鱼腥草共生养殖池塘沉积物菌群结构与功能特征[J].中国农学通报,2015,31(14):64-73. [11]苟小兰,苏艳秋,黄丹,等. 生态调控技术对异育银鲫养殖池底泥菌群多样性的影响[J]. 水产科学,2017,36(2):148-152. [12]秦伟,周鑫,徐增洪,等. 不同放养密度和水草覆盖率下克氏原螯虾池塘底泥中微生物群落特征[J]. 水产科学,2015,34(10):621-628. [13]李晓,李冰,董玉峰,等. 高产团头鲂池塘表层沉积物微生物群落的结构特征及组成多样性分析[J].水产学报,2014,38(2):218-227. [14]Bowman J, Mccuaig R. Biodiversity, community structural shifts, and biogeography of prokaryotes within Antarctic continental shelf sediment [J]. Appl Environ Microbiol,2003,69(5):2463-2483. [15]黎慧娟,彭静静. 异化Fe(Ⅲ)还原微生物研究进展[J].生态学报,2012,32(5):1633-1642. [16]Lovley D R, Holmes D E, Nevin K P. Dissimilatory Fe (Ⅲ) and Mn (Ⅳ) reduction[G]∥Poole R K. Advances in Microbial Physiology.Amsterdam:Elsevier,2004:219-286. [17]Moon H S, McGuinness L, Kukkadapu R K, et al. Microbial reduction of uranium under iron-and sulfate -reducing conditions: effect of amended goethite on microbial community composition and dynamics [J]. Water Research,2010,44(14):4015-4028. [18]Hori T, Müller A, Igarashi Y, et al. Identification of iron-reducing microorganisms in anoxic rice paddy soil by C13-acetate probing [J].The ISME Journal,2010,4(2):267-278. [19]Suzuki D, Li Z, Cui X, et al. Reclassification of Desulfobacteriu manilini as Desulfatiglans anilini comb. nov. within Desulfatiglans gen. nov., and description of a 4-chlorophenol-degrading sulfate-reducing bacterium, Desulfatiglans parachlorophenolica sp. nov [J].International Journal of Systematic and Evolutionary Microbiology,2014,64(9):3081-3086. [20]万云洋,赵国屏. 原核微生物的硫功能菌[J].微生物学通报,2017,44(6):1471-1480. [21]Coates J D, Chakraborty R, Lack J G,et al. Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas[J].Nature,2001,411(6841):1039-1043. [22]Wolterink A, Kim S, Muusse M, et al. Dechloromonas hortensis sp.nov.and strain ASK-1,two novel (per) chlorate reducing bacteria, and taxonomic description of strain GR-1[J].International Journal of Systematic and Evolutionary Microbiology,2005,55(Pt 5):2063-2068. [23]Coates J D, Michaelidou U, Bruce R A, et al. Ubiquity and diversity of dissimilatory (per) chlorate-reducing bacteria [J].Applied and Environmental Microbiology,1999,65(12):5234-5241. [24]Heylen N K, Vanparys B, Wittebolle L, et al. Cultivation of denitrifying bacteria: optimization of isolation conditions and diversity study[J].Applied and Environmental Microbiology,2006,72(4):2637-2643. [25]Oswald K, Graf J S, Littmann S, et al. Crenothrix are major methane consumers in stratified lakes [J]. The ISME Journal,2017,77(4):1-17. [26]高景峰,张丽芳,张树军,等.两次污泥颗粒化过程中微生物群落的动态变化[J].环境科学,2018,39(5):2265-2273.