Nitrite and Ammonia Removal Patterns of 6 Species or Genera of Microalgae Exposed to Mixed Inorganic Nitrogen
GOU Wanli1, LI Ziying2, WU Xinhua2, WEN Shuangxi1, YANG Zhi1
1. College of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China; 2. Qingdao Vland Biotech Incorporation, Qingdao 266000, China
Abstract:The nitrite and ammonia removal patterns of 6 microalgal species or genera, including 3 diatoms, and 3 members in chlorophyto were primarily studied by analyzing the variation trend of cell density, nitrite concentration, and the ammonia concentration in the modified F/2 medium whose nitrogen source was the mixture of ammonia, nitrate and nitrite. The results showed that all microalgae grew very well and completed a whole growth cycle. In the initial stage of the growth cycle (2—3 d), each strain removed above 95% of the ammonia, with the maximal relative removal rate of 0.999 mg/(L·d) in Pyramimonas sp. KDN21 and the minimal relative removal rate of 0.639 mg/(L·d) in Amphora sp. KDN17. Most strains slowly removed a little nitrite (lower than 35%) during this stage, and their relative removal rates were not exceed 0.035 mg/(L·d); Amphora sp. KDN17 was the only microalga which sharply removed up to 65% of the nitrite, with relative removal rate of 0.322 mg/(L·d). In the middle to late stages of the growth cycle (3—6 d), their relative removal rates were lower than 0.020 mg/(L·d), although removed almost all NH+4-N, all strains still removed a little nitrite. These findings indicated that the majority of microalga grew on the mixture inorganic nitrogen sources composed of ammonia, nitrate and nitrite removed massive ammonia, but a little nitrite. Amphora sp. KDN17 was the only one which removed massive ammonia and nitrite simultaneously, so as a probable candidate strain for controlling the water ammonia and nitrite concentration.
苟万里, 李自英, 武心华, 文双喜, 杨智. 混合无机氮源下6株微藻对亚硝态氮、氨氮净化规律初探[J]. 水产科学, 2020, 39(5): 685-693.
GOU Wanli, LI Ziying, WU Xinhua, WEN Shuangxi, YANG Zhi. Nitrite and Ammonia Removal Patterns of 6 Species or Genera of Microalgae Exposed to Mixed Inorganic Nitrogen. 水产科学, 2020, 39(5): 685-693.
[1]傅雪军,马绍赛,曲克明,等. 循环水养殖系统生物挂膜的消氨效果及影响因素分析[J]. 渔业科学进展,2010,31(1):95-99. [2]冼健安,张秀霞,郭慧,等. 亚硝酸盐胁迫对罗氏沼虾血细胞及其抗氧化酶活力的影响[J]. 生物安全学报,2016,25(4):300-307. [3]Bucking C. A broader look at ammonia production, excretion, and transport in fish:a review of impacts of feeding and the environment [J]. Journal of Comparative Physiology B—Biochemical Systemic and Environmental Physiology,2017,187(1):1-18. [4]da Costa O T F, dos Santos Ferreira D J, Lo Presti Mendonca F, et al. Susceptibility of the Amazonian fish, Colossoma macropomum (Serrasalminae), to short-term exposure to nitrite [J]. Aquaculture,2004,232(1/2/3/4):627-636. [5]薛静怡,宗雅丽,侯玉,等. 水产养殖中亚硝酸盐毒性影响及处理的研究进展[J]. 渔业研究,2017,39(4):320-324. [6]高光明,叶德元. 浅谈池塘水质与调控[J]. 科学养鱼,2006(10):79. [7]冼健安,钱坤,郭慧,等. 氨氮对虾类毒性影响的研究进展[J]. 饲料工业,2014,35(22):52-58. [8]卢岩. 一种新型亚硝酸根离子去除剂——亚硝酸螯合剂(BRT)[J]. 中国水产,2004(2):48-49. [9]陈佳毅,孙龙生,吴骏,等. 氨氮和亚硝氮对不同发育阶段罗氏沼虾幼体的急性毒性研究[J]. 水产养殖,2015,36(10):1-6. [10]黄翔鹄,李活,李长玲,等. 牟氏角毛藻对对虾育苗水质及抗逆性的影响[J]. 广东海洋大学学报,2008,28(6):46-50. [11]刘盼,贾成霞,杨慕,等. 2种微藻对养殖水体中氨氮和亚硝态氮的净化作用[J]. 水产科学,2018,37(3):389-393. [12]石峰,魏晓雪,冯剑丰,等. 不同无机氮条件下一种硅藻的氮吸收动力学及模型预测分析[J]. 农业环境科学学报,2018,37(9):1833-1841. [13]王倩雅,罗舒怀,张莹,等. 不同初始氮浓度下尖状栅藻同化硝态氮和CO2的研究[J]. 植物科学学报,2017,35(4):583-591. [14]Ohmori M, Ohmori K, Strotmann H. Inhibition of nitrate uptake by ammonia in a blue-green alga,Anabaena cylindrica [J]. Archives of Microbiology,1977,114(3):225-229 [15]包苑榆,钟萍,韦桂峰,等. 基于15N稳定同位素技术的斜生栅藻对硝氮和氨氮吸收研究[J]. 水生态学杂志,2011,32(3):16-20. [16]Dortch Q. The interaction between ammonium and nitrate uptake in phytoplankton [J]. Marine Ecology Progress Series,1990,61:183-201. [17]Guerrero M G, Vega J M, Losada M. The assimilatory nitrate reducing system and its regulation [J]. Annual Review of Plant Physiology,1981,32(1):169-204. [18]胡章喜,徐宁,段舜山. 不同氮源对 4 种海洋微藻生长的影响[J]. 生态环境学报,2010,19(10):2452-2457. [19]Eppley R W, Coatsworth J L. Uptake of nitrate and nitrite by Ditylum brightwellii-kinetics and mechanisms [J]. Journal of Phycology,1968,4(2):151-156. [20]张桐雨,唐选盼,李洪武,等. 小球藻和双眉藻对虾塘养殖废水氮、磷的去除效果[J]. 广东农业科学,2013,40(18):169-171. [21]马红芳,李鑫,胡洪营,等. 栅藻LX1在水产养殖废水中的生长、脱氮除磷和油脂积累特性[J]. 环境科学,2012,33(6):1891-1896. [22]刘梅,原居林,何海生,等. 微藻在南美白对虾养殖废水中的生长及净化效果[J]. 应用与环境生物学报,2018,24(4):866-872. [23]Guillard R R, Ryther J H. Studies of marine plank-tonic diatoms. Ⅰ. Cyclotella nana Hustedt, and Detonula confervacea (cleve) gran [J]. Canadian Journal of Microbiology,1962,8:229-239. [24]詹晓燕,刘臣辉,范海燕,等. 水体中氨氮测定方法的比较——纳氏试剂光度法、靛酚蓝比色法[J]. 环境科学与管理,2010,35(11):132-135. [25]国家环境保护局规划标准处. GB 7493—1987,水质 亚硝酸盐氮的测定 分光光度法[S]. 北京:中国标准出版社,1987. [26]王兰. 环境微生物学实验方法与技术[M]. 2版. 北京:化学工业出版社,2016:70-72. [27]赵志刚,罗亮,王常安,等. 不同鲤养殖模式生物絮团系统中鱼体的生长及水质[J]. 水产学报,2017,41(1):99-108. [28]刘健,侯冬伟,曾燊正,等. 凡纳滨对虾封闭式养殖池塘水体氨氮、亚硝氮、硝氮变化规律及消减措施[J]. 中山大学学报:自然科学版,2017,56(6):116-122. [29]Lin Y C, Chen J C. Acute toxicity of nitrite on Litopenaeus vannamei (Boone) juveniles at different salinity levels [J]. Aquaculture,2003,224(1/2/3/4):193-201. [30]高明辉,马立保,葛立安,等. 亚硝酸盐在水生动物体内的吸收机制及蓄积的影响因素[J]. 南方水产,2008,4(4):73-79. [31]肖焱波,李文学,段宗颜,等. 植物对硝态氮的吸收及其调控 [J].中国农业科技导报,2002,4(2):56-59. [32]Chen W, Zhang Q, Dai S. Effects of nitrate on intracellular nitrite and growth of Microcystis aeruginosa [J]. Journal of Applied Phycology,2009,21(6):701-706.