Effect of Water Temperature on Embryonic Development of Frog Pelophylax nigromaculatus
WANG Yuzhu1,2, LIU Wenshu1, LI Siming1, LI Debing2, GUO Xiaoze1
1. Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China; 2. College of Animal Science, Sichuan Agricultural University, Chengdu 611130, China
Abstract:The same patch eggs of frog Pelophylax nigromaculatus with the developmental 15th stage were incubated in wooden frame cotton nets disposed in a 50 cm×30 cm×44 cm glass jar about 1 cm below the water surface at a density of 100 eggs per jar at water temperatures of 18, 21, 24, 27, 30, and 33 ℃, and photoperiod of 12L∶12D to investigate the effects of different water temperatures on the hatching rate, survival rate, developmental duration, and developmental parameters including body weight, body length, tail length, and body width of the frog embryos. The results showed that the frog larvae with stage 25 had increasing survival rate first and then decreasing survival rate with the increase in water temperature, with survival rate of over 82.42% at 24—27 ℃, without significant effect of water temperature on hatching rate (P>0.05). The body weight in stage 25 was shown to be increased with the increase in the test water temperature,and body length, body width and tail length showed a trend of increasing first and then decreasing with the increase in temperature, with the maximum at 30 ℃. The embryo development rate was gradually accelerated with the increase in water temperature, and took 10 h and 60 h to develop from stage 15 to stages 19 and 25 at water temperature of 33 ℃, respectively, and 48 h and 204 h at 18 ℃. It is concluded that 24—27 ℃ is suitable water temperature range for embryo development of frog P. nigromaculatus.
王玉柱, 刘文舒, 李思明, 黎德兵, 郭小泽. 不同水温对黑斑蛙胚胎发育的影响[J]. 水产科学, 2020, 39(6): 941-946.
WANG Yuzhu, LIU Wenshu, LI Siming, LI Debing, GUO Xiaoze. Effect of Water Temperature on Embryonic Development of Frog Pelophylax nigromaculatus. 水产科学, 2020, 39(6): 941-946.
[1]杨玉慧,张德兴,李义明,等. 中国黑斑蛙种群的线粒体DNA多样性和生物地理演化过程的初探[J].动物学报,2004,50(2):193-201. [2]高爱保,苑丽霞.工业污水对黑斑蛙蝌蚪生长发育及DNA的影响[J].水产科学,2013,32(7):420-423. [3]何志刚,伍远安,徐永福,等.野生与养殖黑斑蛙肌肉营养品质的比较分析[J].水产科学,2019,38(4):506-513. [4]Huey R B, Kingsolver J G. Evolution of thermal sensitivity of ectotherm performance[J]. Trends in Ecology & Evolution,1989,4(5):131-135. [5]Portner H O, Knust R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance[J]. Science,2007,315(5808):95-97. [6]Vickers M, Manicom C, Schwarzkopf L. Extending the cost-benefit model of thermoregulation: high-temperature environments[J]. The American Naturalist,2011,177 (4):452-461. [7]Gangloff E J, Telemeco R S. High temperature, oxygen, and performance: insights from reptiles and amphibians[J]. Integrative and Comparative Biology,2018,58(1):9-24. [8]Wheeler C A, Bettaso J B, Ashton D T, et al. Effects of water temperature on breeding phenology,growth,and metamorphosis of foothill yellow-legged frogs (Rana boylii): a case study of the regulated mainstem and unregulated tributaries of California's trinity river[J]. River Research and Applications,2015,31(10):1276-1286. [9]Wersebe M, Blackwood P, Guo Y T, et al. The effects of different cold-temperature regimes on development, growth, and susceptibility to an abiotic and biotic stressor[J]. Ecology and Evolution,2019,9(6):3355-3366. [10]王守红,李豪,刘露莎,等. 温度对饰纹姬蛙蝌蚪生长的影响[J].动物学杂志,2018,53(2):191-197. [11]徐骁骁,赵文阁,刘鹏.环境温度对东北林蛙不同地理种群繁殖期体温和胚胎发育的影响[J].生态学报,2018,38(8):2965-2973. [12]王立志.恒温和变温驯化对大蟾蜍蝌蚪热耐受性的影响[J].生态学报,2014,34(4):1030-1034. [13]陈雯,俞宝根,郑荣泉,等.温度对棘胸蛙胚胎发育及蝌蚪表型特征的影响[J].贵州农业科学,2010,38(1):108-110. [14]Gosner K L. A simplified table for staging anuran embryos and larvae with notes on identification[J]. Herpetologica,1960,16:183-190. [15]朴忠万,金志民,杨春文,等.中国林蛙人工池塘孵化与越冬技术研究[J].安徽农业科学,2009,37(34):16882-16883. [16]刘楚吾,徐贺伦,冯超源,等.环境因素对虎纹蛙胚胎发育的影响[J].湛江海洋大学学报,2001,21(2):7-12. [17]符史杭,徐尚冲.水温对虎纹蛙受精卵孵化的影响[J].湖北农业科学,2014,53(20):4924-4926. [18]刘丽,刘勇波,刘楚吾.虎纹蛙孵化条件及蝌蚪培育技术[J].内陆水产,2001,26(3):12-13. [19]朱治平,施履吉.黑斑蛙Rana nigromaculata正常发育表[J].解剖学报,1957,2(1):59-64. [20]于业辉,张守纯,刘超.沈阳地区黑斑蛙早期胚胎发育研究[J].四川动物,2013,32(4):535-539. [21]王雪虹. 温度和机械刺激对牛蛙胚胎发育的影响[J].集美大学学报:自然科学版,1997,2(2):62-65. [22]张耀光.不同温度对中华蟾蜍早期胚胎发育的影响[J].动物学杂志,1990,25(2):22-23. [23]王立志,李晓晨.温度对中国林蛙卵孵化和孵出热耐受性的影响[J].动物学杂志,2007,42(1):121-127. [24]朱艳芳,高波,张爱民,等.温度和光照时间对中华大蟾蜍胚胎发育的影响[J].安徽农业科学,2012,40(30):14748-14749. [25]王应天. 青蛙Rana nigromaculata早期胚胎发育[J].北京大学学报:自然科学版,1958(1):95-104. [26]Delia J, Rivera-Ordonez J M, Salazar-Nicholls M J, et al. Hatching plasticity and the adaptive benefits of extended embryonic development in glassfrogs[J].Evolutionary Ecology,2019,33(1):37-53. [27]Mitchell N J, Seymour R S. The effects of nest temperature, nest substrate, and clutch size on the oxygenation of embryos and larvae of the Australian moss frog, Bryobatrachus nimbus[J]. Physiological and Biochemical Zoology,2003,76(1):60-71. [28]Kaplan R H. Ontogenetic energetics in Ambystoma[J]. Physiological Zoology,1980,53(1):43-56. [29]Eme J, Mueller C A, Manzon R G, et al. Critical windows in embryonic development: shifting incubation temperatures alter heart rate and oxygen consumption of lake whitefish (Coregonus clupeaformis) embryos and hatchlings[J]. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology,2015,179:71-80. [30]Mueller C A, Joss J M P, Seymour R S. The energy cost of embryonic development in fishes and amphibians, with emphasis on new data from the Australian lungfish, Neoceratodus forsteri[J]. Journal of Comparative Physiology B,2011,181(1):43-52. [31]Warkentin K M. Environmentally cued hatching across taxa: embryos respond to risk and opportunity[J]. Integrative and Comparative Biology,2011,51(1):14-25. [32]秦建汉,程碧霞,谢海,等.温度和密度对雄性泽陆蛙静止代谢率的影响[J].生态学杂志,2018,37(12):3701-3705. [33]Bonachea L A. A low-cost laboratory demonstration of the effects of temperature on the metabolism of an aquatic poikilotherm[J]. Journal of Biological Education(2019-07-18)[2019-09-18].Https:∥cloi.org/10.1080/00219266.2019.1643763. [34]Buckley C R, Michael S F, Irschick D J. Early hatching decreases jumping performance in a direct-developing frog, Eleutherodactylus coqui[J]. Functional Ecology,2005,19(1):67-72. [35]Enriquez-Urzelai U, Sacco M, Palacio A S, et al. Ontogenetic reduction in thermal tolerance is not alleviated by earlier developmental acclimation in Rana temporaria[J]. Oecologia,2019,189(2):385-394.