Nutrient Requirement of Kelp Laminaria hyperborea Seedlings for Nitrogen, Phosphorus and Iron
DU Xinxin1, LIU Fuli2,3, YUAN Yanmin2, LIANG Zhourui2,3, ZHANG Pengyan2,3, LIU Shengping1
1.College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; 2.Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; 3.Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
Abstract:Kelp Laminaria hyperborea seedlings with length of 35 cm were cultivated in filtered and sterilized seawater in aeration at nitrogen and phosphorus concentrations [ρ(N)∶ρ(P)=10∶1] of 0 mg/L, 0.5 mg/L, 2 mg/L, 4 mg/L, 6 mg/L, 8 mg/L and 10 mg/L in NO3--N, with NaNO3 and KH2PO4 as nitrogen and phosphorus sources at water temperature of 9 ℃, and photoperiod of 12L∶12D. After 12 h, 24 h, 36 h, 48 h and 60 h, the chlorophyll fluorescence parameters including photosystem Ⅱ maximum fluorescence yield, and Fv/Fm and the apparent photosynthetic rates of seedlings were determined in 12 h, 24 h and 48 h cultivation. In another trial, the kelp seedlings were cultivated at Fe3+ concentration of 0 mg/L and 1 mg/L in NH4+-N (3 mg/L) groups and 0 mg/L, 0.2 mg/L, 1 mg/L and 5 mg/L NO3--N (3 mg/L) groups, with NaNO3 and NH4Cl as the nitrogen source, KH2PO4 as phosphorus source, and FeCl3 as iron source. Then concentrations of PO43--P, NO3-N, NH4+ -N and Fe3+ were analyzed in the seedling culture medium in 0 h, 4 h, 10 h, 24 h and 48 h and the relative growth rate, maximum fluorescence yield (Fv/Fm) of photosystem and Fe3+ concentration were measured in the kelp seedlings exposed to various concentrations of nitrogen, phosphorus, and Fe3+ in 3 days to explore the optimal nutrient concentrations and to understand the interaction mechanism of the demand of Fe, N and P, the relative growth rate, the maximum quantum yield of (Fv/Fm) and apparent photosynthetic rate of the kelp seedlings under different nutrient concentrations. The results showed that there was significantly higher relative growth rate in the kelp seedlings exposed to 2—4 mg/L of NO3--N, and 0.2—0.4 mg/L of PO43--P, indicating that the concentration ranges of NO3--N and PO43--P was favorable for the seedling growth. The higher Fv/Fm and apparent photosynthetic rate were observed in the seedlings exposed to NO3--N concentration of 2—4 mg/L, and PO43--P concentration of 0.2—0.4 mg/L, indicating that the concentration range of NO3--N and PO43--P was favorable for photosynthesis. The good growth was found in the seedlings exposed to Fe3+ concentration of 0.2—1.0 mg/L, with the maximal relative growth rate at Fe3+ concentration of 1 mg/L. The appropriate iron concentration led to significant improvement of uptake of NO3--N and PO43--P by the seedling within 10 h, without significant effect in 24 h. At the same time, the absorption of iron by seedlings was basically saturated within 10 h, and the absorption of NO3--N and PO43-P was inhibited at iron concentration of 5 mg/L, without significant effect of addition of iron on absorption of NH4+-N (P>0.05).
[1]Kain J M. Populations of Laminaria hyperborea at various latitudes[J]. Helgolnder Wissenschaftliche Meeresuntersuchungen,1967,15(1/2/3/4):489-499. [2]Kain J M, Jones N S. The biology of Laminaria hyperborea. VI. Some Norwegian populations[J]. Journal of the Marine Biological Association of the United Kingdom,1971,51(2):387-408. [3]Bekkby T, Rinde E, Erikstad L, et al. Spatial predictive distribution modelling of the kelp species Laminaria hyperborea[J]. ICES Journal of Marine Science,2009,66(10):2106-2115. [4]Kain J M. Synopsis of biological data on Laminaria hyperborea[J]. FAO Fisheries Symopsis,1972,77(2):45-46. [5]Jupp B P, Drew E A. Studies on the growth of Laminaria hyperborea (Gunn.) Fosl. Ⅰ. Biomass and productivity [J]. Journal of Experimental Marine Biology and Ecology,1974,15(2):185-196. [6]Kain J M, Jones M N S. Aspects of the biology of Laminarjahyperborea Ⅳ. Growth of early sporophytes [J]. Journal of the Marine Biological Association of the United Kingdom,1965,45(1):129-143. [7]Kain J M. Aspects of the biology of Laminaria hyperborea I. vertical distribution[J]. Journal of the Marine Biological Association of the United Kingdom,1962,42(2):377-385. [8]Smale D A, Burrows M T, Moore P, et al. Threats and knowledge gaps for ecosystem services provided by kelp forests: a northeast Atlantic perspective[J]. Ecology and Evolution,2013,3(11):4016-4038. [9]梁洲瑞,刘福利,杜欣欣,等.光强对极北海带幼苗生长和生化特性的影响[J].渔业科学进展,2019,40(4):115-122. [10]王翔宇,詹冬梅,李美真,等.大型海藻吸收氮磷营养盐能力的初步研究[J].渔业科学进展,2011,32(4):67-71. [11]李文慧,宋明,刘冉,等.氮磷营养盐因子对缘管浒苔生长、叶绿素荧光特性和氮磷富集的影响[J].生态与农村环境学报,2015,31(4):553-558. [12]许忠能,林小涛,计新丽,等.环境因子对细基江蓠繁枝变种氮、磷吸收速率的影响[J].应用生态学报,2001,12(3):417-421. [13]刘静雯,董双林.海藻的营养代谢及其对主要营养盐的吸收动力学[J].植物生理学通讯,2001,37(4):325-330. [14]丰茂武,吴云海,冯仕训,等.不同氮磷比对藻类生长的影响[J].生态环境,2008,17(5):1759-1763. [15]王文杰,姚旦,赵辰红,等.氮磷营养盐对四种淡水丝状蓝藻生长的影响[J].生态科学,2008,27(4):202-207. [16]蔡煜,刘东超,王晓梁,等.温度、照度和氮磷营养盐对长茎葡萄蕨藻富硒的影响[J].广东海洋大学学报,2019,39(3):46-53. [17]田千桃,霍元子,王阳阳,等.浒苔对NH4+-N与NO3--N吸收的相互作用[J].海洋科学,2010,34(7):41-45. [18]吕冬伟,刘欢,田鹏华,等.大型海藻孔石莼对海水中不同形态氮盐和磷酸盐的吸收研究[J].山东农业科学,2019,51(3):68-72,76. [19]李雅娟,王起华.氮、磷、铁、硅营养盐对底栖硅藻生长速率的影响[J].大连水产学院学报,1998,13(4):7-14. [20]Baalen C V, Stewart W P D. Algal physiology and biochemistry [J]. Quarterly Review of Biology,1974,102(2):78. [21]Martin J H, FitZwater S E, Gordon R M. Iron deficiency limits phytoplankton growth in Antarctic waters [J]. Global Biogeochemical Cycles,1990,4(1):5-12. [22]Martin J H, Gordon M, Fitzwater S E. The case for iron[J]. Limnology and Oceanography,1991,36(8):1793-1802. [23]Martin J H, Fit zwater S E, Michael Gordon R, et al. Iron, primary production and carbon-nitrogen flux studies during the JGOFS, North Atlantic bloom experiment[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography,1993,40(1/2):115-134. [24]雷玉新,刘耀兴,席银,等.水体中铁离子和氮磷比对藻类生长影响研究[J].生态科学,2016,35(1):75-78. [25]Kobayashi T, Nozoye T, Nishizawa N K. Iron transport and its regulation in plants [J]. Free Radical Biology and Medicine,2019,133(5):11-20. [26]朱明远,牟学延,李瑞香,等.铁对三角褐指藻生长、光合作用及生化组成的影响[J].海洋学报,2000,22(1):110-116. [27]陈静峰,翁焕新,孙向卫.磷、铁营养盐的协同交互作用对赤潮隐藻(Crytomonas sp.)生长增殖的影响[J].江南大学学报(自然科学版),2006,5(6):738-741. [28]姚波,席北斗,胡春明,等.铁限制对浮游植物生长和群落组成的影响研究综述[J]. 生态环境学报,2010,19(2):459 -465. [29]Friedlander M, Krom M D, Ben-Amotz A. The effect of light and ammonium on growth, epiphytes and chemical constituents of Gracilaria conferta in outdoor cultures[J]. Botanica Marina,1991,34(3):161-166. [30]李信书,伏光辉,陈百尧,等. 氮、磷加富对条斑紫菜生长及生化组成的影响[J].水产科学,2012,31(9):544-548. [31]董树亭.高产冬小麦群体光合能力与产量关系的研究[J].作物学报,1991,17(6):461-469. [32]李恒,李美真,徐智广,等.不同营养盐浓度对3种大型红藻氮、磷吸收及其生长的影响[J].中国水产科学,2012,19(3):462-470. [33]钱鲁闽,徐永健,王永胜.营养盐因子对龙须菜和菊花江蓠氮磷吸收速率的影响[J].台湾海峡,2005,24(4):546-552. [34]姜宏波,田相利,董双林,等.不同营养盐因子对鼠尾藻氮、磷吸收速率的影响[J].中国海洋大学学报(自然科学版),2007,37(增刊):175-180. [35]黄中坚,钟志海,宋志民,等.不同营养盐水平对芋根江蓠的生长及生化组分的影响[J].南方水产科学,2014,10(5):30-38. [36]丁刚,于晓清,詹冬梅,等.不同氮、磷浓度及配比对鼠尾藻幼苗生长的影响[J].水产科学,2014,33(4):219-222. [37]王萍,桂福坤,吴常文.营养盐因子对孔石莼和繁枝蜈蚣藻氮、磷吸收的影响[J].水产科学,2010,29(4):208-211. [38]Blokhina O, Virolainen E, Fagerstedt K V. Antioxidants, oxidative damage and oxygen deprivation stress: a review [J]. Annals of Botany,2003,91(2):179-194. [39]王可玢,许春辉,赵福洪,等.水分胁迫对小麦旗叶某些体内叶绿素a荧光参数的影响[J].生物物理学报,1997,13(2):273-278. [40]张其德,刘合芹,张建华,等.限水灌溉对冬小麦旗叶某些光合特性的影响[J]. 作物学报,2000,26(6):869-873. [41]张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,34(4):444-448. [42]姚海芹. “海天1号”海带新品系生物学特征的研究[D].上海:上海海洋大学,2016. [43]曹勇,李道季,张经.海洋浮游植物铁限制的研究进展[J].海洋通报,2002,21(6):83-90. [44]Hutchins D A, DiTullio G R, Zhang Y, et al. An iron limitation mosaic in the California upwelling regime[J]. Limnology and Oceanography,1998,43(6):1037-1054. [45]Baalen C V, Stewart W P D. Algal physiology and biochemistry [J]. Quarterly Review of Biology,1974,102(2):78. [46]Brenchley J L, Raven J A, Johnston A M. Resource acquisition in two intertidal fucoid seaweeds, Fucus serratus and Himanthalia elongata: seasonal variation and effects of reproductive development [J]. Marine Biology,1997,129(2):367-375. [47]Pritchard D W, Hurd C L, Beardall J, et al. Restricted use of nitrate and a strong preference for ammonium reflects the nitrogen ecophysiology of a light-limited red alga [J]. Journal of Phycology,2015,51(2):277-287. [48]Lobban C S, Harrison P J. Seaweed Ecology and Physiology[M]. New York:Cambridge University Press,1994.