Abstract:To investigate effect of light on growth and pigment contents of alga Euglena gracilis, the microalga were placed in different light intensities (0 lx, 1500 lx, 3000 lx, 4500 lx, and 6000 lx ), photoperiod (16L∶8D, 14L∶10D, 12L∶12D, 10L∶14D, and 8L∶16D), light wavelengths (green light 495—530 nm, blue light 450—480 nm, red light 615—650 nm, white light, and yellow light 580—595 nm) and then the cell density and the pigment contents were determined by static culture in a constant temperature and light incubator at 450—465 nm and 580—595 nm. The results showed that light intensity, photoperiod and light wavelengths had significant effects on the growth and photosynthetic pigment contents of alga E. gracilis (P<0.05). The light intensity in 1500, 3000, and 4500 lx light groups had a positive effect on the growth of alga, and the light intensity of 3000 lx was the most significant, with the best cell growth. The cytochrome content was also higher than that in the other two groups; the photoperiods 16L∶8D, 14L∶10D and 12L∶12D led to promote the growth of the alga, and the growth condition and cytochrome content of the 14L∶10D group were better. In the other treatment groups, the 8L∶16D inhibited the growth of the alga E. gracilis, and the pigment content was also significantly lower than that in the other treatment groups (P<0.05). The blue light and white light groups significantly promoted the growth of the E. gracilis (P<0.05), and the highest pigment content under blue light conditions was more conducive to the accumulation of cytochrome. In summary, the most suitable conditions for the growth and the accumulation of photosynthetic pigments of E. gracilis are light intensity of 3000 lx, photoperiod of 14L∶10D and blue light.
[1]赵文.水生生物学[M].北京:中国农业出版社,2005:91. [2]陆嘉欣.裸藻高产生物活性物质突变株的筛选及光暗条件下转录组初步分析[D]. 深圳:深圳大学,2017. [3]谢树莲,凌元洁,李砧.山西运城盐池湖区裸藻植物及其分布特点[J].水生生物学报,1998,22(1):33-38. [4]彭文琴. 不同碳源和光照周期对三种微藻生长及油脂积累的影响[D].南昌:南昌大学,2012. [5]Ivanova I M, Nepogodiev S A, Gerhard S, et al. Fluorescent mannosides serve as acceptor substrates for glycosyltransferase and sugar-1-phosphate transferase activities in Euglena gracilis membranes [J]. Carbohydrate Research,2017,483:26-38. [6]Zhu J Y, Wakisaka M. Growth promotion of Euglena gracilis by ferulic acid from rice bran[J]. AMB Express,2018,8(1):16. [7]Chan G C, Chan W K, Sze D M. The effects of β-glucan on human immune and cancer cells[J]. Journal of Hematology & Oncology,2009,2(1):25. [8]McIvor A. A compendium of Essays on Alternative Therapy[J]. Perspectives in Public Health, 2015,135(2):108. [9]Xiao Z, Trincado C A, Murtaugh M P. β-Glucan enhancement of T cell IFNγ response in swine[J]. Veterinary Immunology and Immunopathology,2004,102(3):315-320. [10]王芳,王业菊,李金龙,等. 藻类多糖药用活性的最新进展[J]. 食品工业科技,2011,32(5):440-443. [11]Gong Y M, Hu H H, Gao Y, et al. Microalgae as platforms for production of recombinant proteins and valuable compounds: progress and prospects[J]. Journal of Industrial Microbiology & Biotechnology, 2011,38(12):1879-1890. [12]Sanghvi A M, Lo Y M. Present and potential industrial applications of macro-and microalgae [J]. Recent Patents on Food, Nutrition & Agriculture,2010,2(3):187-194. [13]Mahapatra D M, Chanakya H N, Ramachandra T V. Euglena sp. as a suitable source of lipids for potential use as biofuel and sustainable wastewater treatment[J]. Journal of Applied Phycology,2013,25(3):855-865. [14]Nakatsu C, Hutchinson T C. Extreme metal and acid tolerance of Euglena mutabilis and an associated yeast from Smoking Hills, Northwest Territories, and their apparent mutualism[J]. Microbial Ecology,1988,16(2):213-231. [15]栾青. 不同环境条件和加工条件对经济褐藻生长及营养组成的影响[D]. 烟台:烟台大学,2018. [16]Huang Q S, Jiang F H, Wang L Z, et al. Design of photobioreactors for mass cultivation of photosynthetic organisms[J]. Engineering,2017,3(3):318-329. [17]黄永胜,李长玲,黄翔鹄,等. 温度、盐度和照度对北方娄氏藻生长和叶绿素a含量的影响[J].广东海洋大学学报,2017,37(4):28-33. [18]姚瑶. 环境因子对针叶蕨藻(Caulerpa sertularioides)生长及氨氮吸收动力学的影响[D].海口:海南大学,2016. [19]韦韬,顾文辉,李健,等. 雨生红球藻的光周期效应[J]. 植物学报,2013,48(2):168-173. [20]Takada J, Murase N, Abe M, et al. Growth and photosynthesis of Ulva prolifera under different light quality from light emitting diodes (LEDs)[J]. Aquaculture Science,2011,59(1):101-107. [21]唐青青,方治国,嵇雯雯,等.光质对蛋白核小球藻(Chlorella pyrenoidosa)生长特征及生化组成的影响研究[J]. 环境科学,2014,35(11):4212-4217. [22]李其雨,李爱芬,张成武. 真眼点藻类色素的提取与测定方法[J]. 生态科学,2012,31(3):278-283. [23]包楠欧,史定刚,关万春,等. CO2及光强对南麂列岛铜藻生长的影响[J]. 浙江农业学报,2014,26(3):649-655. [24]张璐,刘碧云,葛芳杰,等. 丝状绿藻生长的环境影响因子及控制技术研究进展[J]. 生态学杂志,2017,36(7):2029-2035. [25]孟天. 温度和光照强度对5种海洋单胞藻类生长及类胡萝卜素类物质积累的影响[D]. 青岛:中国海洋大学,2015. [26]钟志海,黄中坚,陈伟洲. 不同环境因子对异枝江蓠的生长及生化组分的影响[J]. 渔业科学进展,2014,35(3):98-104. [27]张建伟,刘媛媛,吴海龙,等. 环境因子对瓦氏马尾藻生长及光合作用的影响[J]. 中国水产科学,2014,21(6):1227-1235. [28]郑洁,胡美君,郭延平. 光质对植物光合作用的调控及其机理[J]. 应用生态学报,2008,19(7):1619-1624. [29]陆开形,蒋霞敏,翟兴文. 光照对雨生红球藻生长的影响[J]. 河北渔业,2002(6):6-8,37. [30]黄旭雄,曾蓓蓓,穆亮亮,等. 盐度—光照强度—温度对角毛藻生长及高不饱和脂肪酸含量的影响[J]. 水产学报,2016,40(9):1451-1461. [31]Li Y C, Zhou W G, Hu B, et al. Effect of light intensity on algal biomass accumulation and biodiesel production for mixotrophic strains Chlorella kessleri and Chlorella protothecoide cultivated in highly concentrated municipal wastewater[J]. Biotechnology and Bioengineering,2012,109(9):2222-2229. [32]苏醒,邹潇潇,朱军,等. 不同光强处理对长茎葡萄蕨藻叶绿素荧光特性的影响[J]. 中国水产科学,2017,24(4):783-790. [33]陈中伟. 不同水温、光照条件下东海轻质原油对浮游植物生长及叶绿素的影响[D]. 上海:上海海洋大学,2015. [34]Xia S, Wan L L, Li A F, et al. Effects of nutrients and light intensity on the growth and biochemical composition of a marine microalga Odontella aurita[J]. Chinese Journal of Oceanology and Limnology,2013,31(6):1163-1173. [35]高静思,王茂伟,汪小雄,等. 光照强度对伪鱼腥藻生长及光合活性的影响[J]. 哈尔滨工业大学学报,2019,51(8):67-72. [36]黄永胜,李长玲,黄翔鹄,等. 温度、盐度和照度对北方娄氏藻生长和叶绿素a含量的影响[J]. 广东海洋大学学报,2017,37(4):28-33. [37]张丽霞,朱涛,张雅婷,等.不同光强对铜绿微囊藻生长及叶绿素荧光动力学的影响[J]. 信阳师范学院学报(自然科学版),2009,22(1):63-65. [38]Liu J H, Yuan C, Hu G R, et al. Effects of light intensity on the growth and lipid accumulation of microalga Scenedesmus sp. 11-1 under nitrogen limitation[J]. Applied Biochemistry and Boitechnology,2012,166(8):2127-2137. [39]沈英嘉,陈德辉. 不同光照周期对铜绿微囊藻和绿色微囊藻生长的影响[J]. 湖泊科学,2004,16(3):285-288. [40]刘青,张晓芳,李太武,等. 光照对4种单胞藻生长速率、叶绿素含量及细胞周期的影响[J]. 大连水产学院学报,2006,21(1):24-30. [41]江红霞,林雄平,雷梦云,等. 光周期对雨生红球藻生物量、虾青素累积和抗氧化能力的影响[J]. 水产科学,2015,34(9):555-559. [42]严美姣,王银东,胡贤江. 光照对小球藻、斜生栅藻生长速率及叶绿素含量的影响[J]. 安徽农学通报,2007,13(23):27-29. [43]Ho S H, Chan M C, Liu C C, et al. Enhancing lutein productivity of an indigenous microalga Scenedesmus obliquus FSP-3 using light-related strategies[J]. Bioresource Technology,2014,152:275-282. [44]Miki O, Okumura C, Marzuki M, et al. Contrasting effects of blue and red LED irradiations on the growth of Sargassum horneri during the germling and immature stages[J]. Journal of Applied Phycology,2017,29(3):1461-1469. [45]韩军军,钟晨辉,何培民,等. 不同光质 LED 光源对坛紫菜自由丝状体生长和生理特性的影响 [J]. 水产学报,2017,41(2):230-239. [46]Zhao X R, Ma R J, Liu X T, et al. Strategies related to light quality and temperature to improve lutein production of marine microalga Chlamydomonas sp.[J]. Bioprocess and Biosystems Engineering,2019,42(3);435-443. [47]Correa\|Reyes J G, Pilar Snchez\|Saavedra M, Siqueiros\|Beltrones D A, et al. Isolation and growth of eight strains of benthic diatoms, cultured under two light conditions[J]. Journal of Shellfish Research,2001,20(2):603-610. [48]何蔚,杨振超,蔡华,等. 光质调控蔬菜作物生长和形态研究进展 [J]. 中国农业科技导报,2016,18(2):9-18. [49]王伟. 光质对中华盒形藻生长及生化组成的影响 [J]. 武汉植物学研究,1999,17(3):197-200. [50]Nguyen P T, Ruangchuay R, Lueangthuwapranit C. Effect of shading colours on growth and pigment content of Gracilaria fisheri (Xia & Abbott) Abbott, Zhang & Xia (Gracilariales, Rhodophyta) [J]. Aquaculture Research,2017,48(3):1119-1130. [51]Ju Q, Xiao H, Wang Y, et al. Effects of UV-B radiation on tetraspores of Chondrus ocellatusHolm(Rhodophyta), and effects of red and blue light on repair of UV-B\|induced damage [J]. Chinese Journal of Oceanology and Limnology,2015,33(3):650-663. [52]Howell R, Krober O, Collins F. The effect of light quality on growth and composition of soybean[J]. Plant Physiology,1997,32(Suppl.):8.