Abstract:Genetic diversity was investigated in 1 year old yellow catfish Pelteobagrus fulvidraco and longsnout catfish Leiocassis longirostris with body weight of (14.20±1.20) g and their hybrid F1 [yellow catfish (♀) and wild longsnout catfish (♂) cross] using SSR molecular labeling technology and 12 pairs of high polymorphic primers selected from 20 pairs of microsatellite primers. The average number of allele (Na) was shown to be 4.583 in yellow catfish, 3.667 in longsnout catfishand 5.000 in their F1 hybrids, the average number of effective allele (Ne) was found to be 2.382 in yellow catfish, 2.221 in longsnout catfish and 2.535 in their F1 hybrids, the average observed heterozygosity (Ho) 0.419 in yellow catfish, 0.367 in longsnout catfish and 0.604 in their F1 hybrids, and the average expected heterozygosity (He) 0.477 in yellow catfish, 0.383 in longsnout catfish and 0.597 in their F1 hybrids. There was polymorphic information content (PIC) of 0.420 in yellow catfish, 0.365 in longsnout catfish and 0.509 in their F1 hybrids. The genetic distance between F1 and its male parent was 0.8551, which was smaller than that between F1 and its female parent (1.7271). The dendrogram of phylogeny revealed that the F1 hybrids was first clustered with its male parent, showing that the hybrid F1 generation got more genetic material from the male parent and had more genetic diversity and higher gene heterozygosity than the parents. The findings provide data support for the genetic diversity of the hybrid progenies of yellow catfish and longsnout catfish and a theoretical basis for the exploration of the genetic relationship between parents and their offsprings after the intergenetic cross breeding.
王宏玉,武兆文,付东勇,苏孟园,杨汶珊,唐荣叶,王涛,尹绍武. 黄颡鱼(♀)、长吻(♂)及其杂交F1代遗传多样性分析[J]. 水产科学, 2021, 40(2): 226-232.
WANG Hongyu, WU Zhaowen, FU Dongyong, SU Mengyuan, YANG Wenshan, TANG Rongye, WANG Tao, YIN Shaowu. Genetic Diversity of Yellow Catfish Pelteobagrus fulvidraco (♀), Longsnout Catfish Leiocassis longirostris (♂) and Their Hybrid F1 Generation. 水产科学, 2021, 40(2): 226-232.
[1]王红莹,黄文清.应用微卫星标记分析长江流域长吻4个群体的遗传多样性[J].河南农业科学,2011,40(2):146-148. [2]郜卫华,谢芳丽,胡伟,等.3龄长吻肌肉营养成分分析与评价[J].江苏农业科学,2017,45(9):163-167. [3]罗玉双,夏维福,刘良国,等.黄颡鱼生物学特性初步研究[J].常德师范学院学报(自然科学版),2000(2):69-71. [4]Zhang G S, Liang X, Zhang J J, et al. The complete mitochondrial genome of the hybrid of Leiocassis longirostris (♂) × Pelteobagrus fulvidraco (♀)[J].Mitochondrial DNA Part B,2017,2(2):577-578. [5]Guo S S, Luo X Z, Liang H W. Mitochondrial DNA sequence of the hybrid of Leiocassis longirostris (♀) and Pelteobagrus fulvidraco (♂)[J].Mitochondrial DNA Part B,2016,1(1):166-167. [6]Liang H W, Guo S S, Luo X Z, et al. Molecular diagnostic markers of Tachysurus fulvidraco and Leiocassis longirostris and their hybrids[J].SpringerPlus,2016,5(1):1-6 [7]孙效文,张晓锋,赵莹莹,等. 水产生物微卫星标记技术研究进展及其应用[J]. 中国水产科学,2008,15(4):689-703. [8]Sánchez J A, Clabby C, Ramos D, et al. Protein and microsatellite single locus variability in Salmo salar L. (Atlantic salmon)[J].Heredity,1996,77(4):423-432. [9]Estoup A, Jarne P, Cornuet J M. Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis[J].Molecular Ecology,2002,11(9):1591-1604. [10]Lie O, Slettan A, Lingaas F, et al. Haploid gynogenesis:a powerful strategy for linkage analysis in fish[J].Animal Biotechnology,1994,5(1):33-45. [11]张佳佳,李杰,张国松,等.杂交黄颡鱼(黄颡鱼♀×瓦氏黄颡鱼♂)及其双亲遗传多样性的微卫星分析[J]. 水产科学,2018,37(5):612-621. [12]魏继海,赵金良,吴俊伟,等. 尼罗罗非鱼(♀)×萨罗罗非鱼(♂)杂交F2与F3群体遗传特征的微卫星分析[J]. 南方水产科学,2016,12(1):30-35. [13]郑国栋,张倩倩,李福贵,等. 团头鲂(♀)×翘嘴鲌(♂)杂交后代的遗传特征及生长差异[J]. 中国水产科学,2015,22(3):402-409. [14]王佩佩.河川沙塘鳢EST-SSR标记开发及在育种上的初步应用[D].南京:南京师范大学,2016. [15]丁严冬,王佩佩,贾秀琪,等.河川沙塘鳢五个家系遗传多样性的微卫星分析[J].水产科技情报,2016,43(3):113-118. [16]莫艳秀,王晓清,莫永亮.长吻遗传多样性的RAPD分析[J]. 江西水产科技,2010(2):13-16. [17]徐莉,赵桂仿.微卫星DNA标记技术及其在遗传多样性研究中的应用[J]. 西北植物学报,2002,22(3):714-722. [18]国伟,沈佐锐.微卫星DNA的多态性及其应用[J].生物技术通讯,2004,15(2):158-159. [19]彭涛,王念民,佟广香,等.湖鲟微卫星引物在三种鲟鱼及杂交子代的通用性研究[J].水产学杂志,2009,22(2):12-16. [20]唐江,田永胜,李振通,等.云纹石斑鱼和鞍带石斑鱼及其杂交后代遗传性状分析[J].农业生物技术学报,2018,26(5):819-829. [21]李思发,颜标,蔡完其,等.尼罗罗非鱼与萨罗罗非鱼正反杂交后代耐盐性能的杂种优势及其与遗传的相关性的SSR分析[J].中国水产科学,2008,15(2):189-197. [22]栗志民,谢丽,叶富良,等.凡纳滨对虾三个亲本及其子代群体的SSR分析[J].安徽农业科学,2010,38(13):6735-6738. [23]Ott J. Analysis of human genetic linkage[M]. 3rd ed. Baltimore, London:Johns Hopkins University Press,1999:382. [24]Botstein D, White R L, Skolnick M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. American Journal of Human Genetics,1980,32(3):314-331. [25]李景芬,采克俊,公翠萍,等.普通黄颡鱼、瓦氏黄颡鱼及其杂种一代遗传特征的微卫星分析[J].江苏农业科学,2018,46(7):159-162. [26]Xing K, Wang Q, Chen C, et al. Microsatellite-based analysis of genetic diversity and relationship of artificial hybrid Jiyan-1 puffer and their parents, Takifugu flavidus and Takifugu rubripes[J]. The Israeli Journal of Aquaculture-Bamidgeh,2016(68):330-336. [27]陈友明,陈校辉,潘莹,等.江黄颡(♀)和乌苏里拟鲿(♂)及其杂交子代遗传变异的RAPD分析[J].上海海洋大学学报,2010,19(1):12-18. [28]谢中国.大黄鱼(♀)与鱼(♂)杂交及其子代的遗传分析[D].长沙:湖南农业大学,2006. [29]尹绍武,廖经球,邓勤,等.红鳍笛鲷(♀)与千年笛鲷(♂)杂交F1代及其亲本的核型研究[J].水产科学,2008,27(4):171-174. [30]刘巧林,刘宇洁,孙念,等.草鱼、赤眼鳟及其杂交F1遗传多样性的RAPD分析[J].水产科技情报,2018,45(1):6-10. [31]杨宁,吴常信.亲本对后代群体的不均等遗传贡献及其优化控制[J].遗传学报,1993,20(4):294-299. [32]钟显胜,吴辉生,王培樟.动物线粒体 DNA 父系遗传研究的综述[J].养殖技术顾问,2014(6):253-254.