Abstract:Juvenile brown salmon Salmo trutta with body weight of (1.07±0.3) g was reared in a circulating water system of 100 cm×100 cm×60 cm circular glass tanks with water depth of about 40 cm at stocking density of 159 ind./m3 at water temperature of 13—14 ℃, and fed diets containing 0% (control group), 0.1%, 0.2%, 0.5%, 1.0%, 1.5% and 2.0% of β-glucan for 60 d in order to study the effect of β-glucan on the survival and growth of juvenile brown salmon. The results showed that the brown salmon fed the diet containing 0.5% β-glucan had the maximal weight gain rate, significantly higher than the fish in other groups (P<0.05), and the maximal growth rate in body length, significantly higher than those in other groups (P<0.05), except for the fish in 0.1%, 0.2% and 0.5% groups, though without significant differences in the survival rate (100%) of juvenile salmon among the different groups (P>0.05). The brown salmon fed the diet containing 0% β-glucan had the minimal growth rate in body length. There was the maximal specific growth rate in juvenile brown salmon in 0.5% group, significantly higher than that in other groups did (P<0.05), and the minimal specific growth rate in juvenile brown salmon in control group. The hepato-somatic index was found to be decreased with increase in dietary β-glucan contents, with the maximal hepato-somatic index in the control group, significantly higher than that in other groups (P<0.05), except for the 0.1%, 0.2%, 0.5% and 1.0% groups. The brown salmon fed the diet containing 0.1% β-glucan had the maximal food ingestion, and the brown salmon fed the diet containing 0% β-glucan had the minimal food ingestion, reduction in food ingestion with increase in dietary β-glucan without significant difference among the groups. There was the maximal food conversion rate in the brown salmon in 0.5% group, without significant difference from that in 1.0%, 1.5% and 2.0% groups, and significantly higher than that in the other groups (P<0.05). The activities of intestinal lipase, trypsin and amylase were increased first and then decreased with the increase in dietary β-glucan content, indicating that β-glucan led to increase the activities of intestinal digestive enzymes. In conclusion, higher survival and better growth was observed in the brown salmon in 0.5% dietary β-glucan group.
王万良,牟振波,周建设,王且鲁,陈美群,张驰. β-葡聚糖对亚东鲑幼鱼存活及生长的影响[J]. 水产科学, 2021, 40(2): 273-278.
WANG Wanliang, MU Zhenbo, ZHOU Jianshe, WANG Qielu, CHEN Meiqun, ZHANG Chi. Effect of Dietary β-Glucan on Survival and Growth of Juvenile Brown Trout Salmo trutta. 水产科学, 2021, 40(2): 273-278.
[1]董兴叶.燕麦β-葡聚糖的提取、纯化及性质研究[D].哈尔滨:东北农业大学,2014. [2]柴继宽,胡凯军,赵桂琴,等.燕麦β-葡聚糖研究进展[J].草业科学,2009,26(11):57-63. [3]王凤梅,樊明寿,郑克宽.燕麦β-葡聚糖的保健作用及影响其积累的因素[J].麦类作物学报,2005,25(2):116-118. [4]王银东,何吉祥.β-葡聚糖的来源、特性及在水产动物中的应用[J].长江大学学报(自然科学版),2014,11(11):30-38. [5]徐骏,高峰,周光宏.功能性低聚糖在饲料工业上的应用研究进展[J].家畜生态学报,2006,27(6):217-222. [6]杨曙明.寡糖在动物营养研究中的进展[J].动物营养学报,1999,11(1):1-9. [7]曹俊明,吴春玉,黄燕华,等.β-葡聚糖对花鲈免疫和抗氧化指标的影响[J].水产科学,2015,34(1):1-7. [8]朱雨蕾,尹军霞,沈国娟.乳酸杆菌和β-葡聚糖合用对鲫鱼消化酶活性的影响[J].水产科学,2011,30(2):98-101. [9]沈文英,阳会军,柯慧芬,等.β-葡聚糖对凡纳滨对虾免疫相关酶活性的影响[J].水产科学,2007,26(7):381-383. [10]周艳萍.β-葡聚糖对异育银鲫非特异性免疫和生长性能的影响[D].武汉:武汉工业学院,2008. [11]赵红霞,曹俊明,王安利,等.饲料中长期添加β-1,3-葡聚糖对凡纳滨对虾生长性能、体成分和生化指标的影响[J].动物营养学报,2010,22(5):1464-1470. [12]裴素蕊,管越强,马云婷.饲料中添加虾青素对凡纳滨对虾生长、存活和抗氧化能力的影响[J].水产科学,2009,28(3):126-129. [13]吴春玉,曹俊明,黄燕华,等.饲料中添加β-葡聚糖对花鲈生长性能、体成分、血清生化指标和抗氨氮应激能力的影响[J].动物营养学报,2013,25(12):3033-3040. [14]王万良,周建设,王建银,等.4种水产药物对褐鳟(Salmo trutta)鱼苗的急性毒性试验[J].西北农业学报,2016,25(7):966-972. [15]王万良,牟振波,曾本和,等.亚东鲑的研究现状及展望[J].西藏农业科技,2019,41(增刊):197-200. [16]王万良,王建银,周建设,等.饥饿和恢复投喂对亚东鲑幼鱼的补偿生长[J].水产科学,2018,37(1):100-104. [17]孟玮,杨天燕,阿地力,等.基于ITS1基因分析亚东鲑(♂)、虹鳟(♀)及其F1代遗传关系[J].水产科学,2017,36(3):373-376. [18]王常安,户国,孙鹏,等.饲料蛋白质和脂肪水平对亚东鲑亲鱼生长性能、消化酶活性和血清指标的影响[J].动物营养学报,2017,29(2):571-582. [19]区又君,刘泽伟.千年笛鲷幼鱼的饥饿和补偿生长[J].水产学报,2007,31(3):323-328. [20]王超,王敏奇.葡聚糖对水生动物免疫功能的影响[J].中国饲料,2010(5):29-31. [21]Robertsen B, Rθrstad G, Engstad R, et al.Enhancement of non-specific disease resistance in Atlantic salmon, Salmo salar L., by a glucan from Saccharomyces cerevisiae cell walls[J].Journal of Fish Diseases,1990,13(5):391-400. [22]许国焕,吴月嫦,陶家发.两种多聚糖对彭泽鲫生长影响及免疫促进作用的初步研究[J].水利渔业,2002,22(4):49-51. [23]张耀武,屈文俊,李文辉.β(1,3)-葡聚糖对锦鲤非特异性免疫功能的影响[J].淡水渔业,2006,36(4):53-55. [24]温安祥,张辽.β(1,3)-葡聚糖对齐口裂腹鱼非特异性免疫功能的影响[J].四川农业大学学报,2010,28(3):361-365. [25]曹俊明,赵红霞,黄燕华,等.β-葡聚糖及其在水生动物中的应用研究[J].饲料工业,2013,34(18):1-6. [26]王永宏,杨小玉,郭正龙,等.β-葡聚糖对暗纹东方鲀幼鱼非特异性免疫及生长性能的影响[J].中国水产科学,2013,20(6):1247-1256. [27]Chen Y Y, Sim S S, Chiew S L, et al. Dietary administration of a Gracilariatenuistipitata extract produces protective immunity of white shrimp Litopenaeus vannamei in response to ammonia stress[J].Aquaculture,2012,370/371(11):26-31. [28]Skov J, Kania P W, Holten-Andersen L, et al. Immunomodulatory effects of dietary β-1, 3-glucan from Euglena gracilis in rainbow trout (Oncorhynchus mykiss) immersion vaccinated against Yersinia ruckeri[J].Fish & Shellfish Immunology,2012,33(1):111-120. [29]孙纪伟,齐遵利.β-葡聚糖对江黄颡鱼生长性能、血清生化指标的影响[J].河北渔业,2017(3):1-4. [30]罗辉,周剑,叶华,等.微生态制剂对鱼类肠道结构和消化酶活性的影响[J].水产科学,2006,25(2):105-108. [31]华雪铭,周洪琪,张宇峰,等.饲料中添加壳聚糖和益生菌对暗纹东方鲀幼鱼生长及部分消化酶活性的影响[J].水生生物学报,2005,29(3):299-305. [32]刘小刚,周洪琪,华雪铭,等.微生态制剂对异育银鲫消化酶活性的影响[J].水产学报,2002,26(5):448-452. [33]李永娟.β-葡聚糖对黄颡鱼生长性能和免疫功能的影响[D].武汉:华中农业大学,2016. [34]覃志彪.β-葡聚糖对奥尼罗非鱼生长性能、机体营养成分及消化酶活性的影响[D].南宁:广西大学,2012. [35]Vllestad L A, Olsen E M, Forseth T. Growth-rate variation in brown trout in small neighbouring streams:evidence for density-dependence?[J].Journal of Fish Biology,2002,61(6):1513-1527. [36]周传朋,刘波,王广宇,等.寡糖—中草药复合物和黄霉素对异育银鲫生长、免疫及抗病力的影响[J].淡水渔业,2009,39(3):46-51.