|
|
小球藻遗传转化技术研究进展 |
曹苏珊1, 薛静2, 王倩楠1, 张秀海2, 安贤惠1 |
1.江苏海洋大学 海洋生命与水产学院,江苏省海洋生物资源与生态环境重点实验室,江苏 连云港 222005; 2.北京市农林科学院,北京农业生物技术研究中心,北京 100097 |
|
A Review: Research Progress on Genetic Transformation in Green Alga Chlorella |
CAO Sushan1, XUE Jing2, WANG Qiannan1, ZHANG Xiuhai2, AN Xianhui1 |
1. Jiangsu Key Laboratory of Marine Bioresources and Eco-environment, College of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China; 2. Beijing Agro-Biotechnology Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China |
引用本文: |
曹苏珊,薛静,王倩楠,张秀海,安贤惠. 小球藻遗传转化技术研究进展[J]. 水产科学, 2021, 40(2): 294-300.
CAO Sushan, XUE Jing, WANG Qiannan, ZHANG Xiuhai, AN Xianhui. A Review: Research Progress on Genetic Transformation in Green Alga Chlorella. 水产科学, 2021, 40(2): 294-300.
|
|
|
|
链接本文: |
http://www.shchkx.com/CN/10.16378/j.cnki.1003-1111.19183 或 http://www.shchkx.com/CN/Y2021/V40/I2/294 |
[1]吴丽娟,余志良,林祥志,等.小球藻基因工程的研究进展及应用前景展望[J].科技通报,2016,32(12):51-56. [2]马瑞娟.根癌农杆菌介导产叶黄素小球藻遗传转化的研究[D].厦门:国家海洋局第三海洋研究所,2013. [3]王宝贝,蔡舒琳,李丽婷,等.小球藻在食品中的应用研究进展[J].食品工业科技,2017,38(17):341-346,352. [4]罗柳茵,李家泳,陈卓,等.小球藻在水产动物饲料中的应用研究进展[J].粮食与饲料工业,2016(6):55-57,61. [5]Radakovits R, Jinkerson R E, Darzins A, et al. Genetic engineering of algae for enhanced biofuel production[J].Eukaryotic Cell,2010,9(4):486-501. [6]Wakasugi T, Nagai T, Kapoor M, et al. Complete nucleotide sequence of the chloroplast genome from the green alga Chlorella vulgaris:the existence of genes possibly involved in chloroplast division[J].PNAS,1997,94(11):5967-5972. [7]吴晓微,孙雪,陆开形,等.小球藻psbA基因的克隆与序列分析[J].水产科学,2008,27(7):360-362. [8]陆姝欢.小球藻培养过程代谢机制的跨组学研究[D].天津:天津大学,2012. [9]李大高,肖鹤,于洪忠,等.小球藻在养殖池塘中的培养初探[J].科学养鱼,2015,31(2):89. [10]Koo J, Park D, Kim H. Expression of bovine lactoferrin N-lobe by the green alga, Chlorella vulgaris[J].Algae,2013,28(4):379-387. [11]Yang D W, Syn J W, Hsieh C H, et al. Genetically engineered hydrogenases promote biophotocatalysis-mediated H2 production in the green alga Chlorella sp. DT[J].International Journal of Hydrogen Energy,2019,44(5):2533-2545. [12]Reddy P H, Johnson A M A, Kumar J K, et al. Heterologous expression of infectious bursal disease virus VP2 gene in Chlorella pyrenoidosa as a model system for molecular farming[J].Plant Cell,Tissue and Organ Culture (PCTOC),2017,131(1):119-126. [13]王逸云.小球藻外源基因转化系统的建立及其表达植酸酶的研究[D].大连:大连理工大学,2005. [14]Yang B, Liu J, Jiang Y, et al. Chlorella species as hosts for genetic engineering and expression of heterologous proteins:progress, challenge and perspective[J].Biotechnology Journal,2016,11(10):1244-1261. [15]钟韵山,徐仰仓,荆柏林,等.小球藻破壁技术研究进展[J].食品研究与开发,2014,35(14):120-124. [16]Lou S L, Wang L Y, He L J, et al. Production of crocetin in transgenic Chlorella vulgaris expressing genes crtRB and ZCD1[J].Journal of Applied Phycology,2015,28(3):1657-1665. [17]Liu L L, Wang Y Q, Zhang Y C, et al. Development of a new method for genetic transformation of the green alga Chlorella ellipsoidea[J].Molecular Biotechnology,2013,54(2):211-219. [18]Ortiz-Matamoros M F, Villanueva M A, Islas-Flores T. Genetic transformation of cell-walled plant and algae cells:delivering DNA through the cell wall[J].Briefings in Functional Genomics,2018,17(1):26-33. [19]Yamada T, Sakaguchi K. Comparative studies on Chlo-rella cell walls:induction of protoplast formation[J].Archives of Microbiology,1982,132(1):10-13. [20]Hatano S, Joh T, Miyamoto T, et al. Preparation of protoplasts from Chlorella ellipsoidea C-27[J]. Plant and Cell Physiology,1992,33(5):651-655. [21]Cho H, Oh Y, Park S, et al. Effects of enzymatic hydrolysis on lipid extraction from Chlorella vulgaris[J].Renewable Energy,2013,54:156-160. [22]Kumar M, Jeon J, Choi J, et al. Rapid and efficient genetic transformation of the green microalga Chlorella vulgaris[J].Journal of Applied Phycology,2018,30(3):1735-1745. [23]谢伟民,李合松,刘会珍,等.小球藻和莱茵衣藻原生质体的电转化研究[J].激光生物学报,2015,24(2):180-185. [24]陈波.两种微型绿藻营养生理及原生质体制备与杂交育种的研究[D].广州:暨南大学,2000. [25]Ma R J, Lin X Z. Vitreoscilla hemoglobin gene (vgb) improves lutein production in Chlorella vulgaris[J].Chinese Journal of Oceanology and Limnology,2014,32(2):390-396. [26]Chow K C, Tung W L. Electrotransformation of Chlo-rella vulgaris[J].Plant Cell Reports,1999,18(9):778-780. [27]Niu Y F, Zhang M H, Xie W H, et al. A new inducible expression system in a transformed green alga,Chlorella vulgaris[J].Genetics and Molecular Research,2011,10(4):3427-3434. [28]周文俊,郑立,郑明刚,等.海洋微藻的无菌化处理及对其生长特性和生化组成的影响[J].海洋学报,2012,34(6):177-186. [29]陈颖,李文彬.小球藻对5种常用基因工程抗生素的敏感性研究[J].海洋与湖沼,1999,30(5):500-505. [30]杨博.普通小球藻稳定遗传体系的建立及基因改造其光合固碳效率的研究[D].广州:华南理工大学,2016. [31]朱军保,王丹,汪文伦,等.4株沙漠小球藻对几种常用抗生素的敏感性研究[J].生物技术通讯,2014,25(6):837-841. [32]Cha T S, Yee W, Aziz A. Assessment of factors affecting Agrobacterium-mediated genetic transformation of the unicellular green alga, Chlorella vulgaris[J].World Journal of Microbiology and Biotechnology,2012,28(4):1771-1779. [33]淦志兵,李美芽,施春雷,等.原壳小球藻对6种常用抗生素的敏感性评价[J].中国食品学报,2012,12(7):171-177. [34]Yedahalli S, Rehmann L, Bassi A. High throughput screening of β-glucuronidase (GUS) reporter in transgenic microalgae transformed by Agrobacterium tumefaciens[J].Algal Research,2018,33:328-336. [35]王亚君,周广航,季春丽,等.埃氏小球藻对11种抗生素的敏感性[J].山西农业科学,2017,45(3):379-385. [36]Run C L, Fang L, Fan J H, et al. Stable nuclear transformation of the industrial alga Chlorella pyrenoidosa[J].Algal Research,2016,17:196-201. [37]Jarvis E E, Brown L M. Transient expression of firefly luciferase in protoplasts of the green alga Chlorella ellipsoidea[J].Current Genetics,1991,19(4):317-321. [38]Dawson H N, Burlingame R, Cannons A C. Stable transformation of chlorella:rescue of nitrate reductase-deficient mutants with the nitrate reductase gene[J].Current Microbiology,1997,35(6):356-362. [39]Talebi A F, Tohidfar M, Tabatabaei M, et al. Genetic manipulation, a feasible tool to enhance unique characteristic of Chlorella vulgaris as a feedstock for biodiesel production[J].Molecular Biology Reports,2013,40(7):4421-4428. [40]Ishida Y, Saito H, Ohta S, et al. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens[J].Nature Biotechnology,1996,14(6):745-750. [41]汪文伦,牟云,胡梦薇,等.沙漠小球藻转人乳铁蛋白的电转优化[J].食品与生物技术学报,2018,37(9):915-923. [42]牟云,汪文伦,许万云,等.人乳铁蛋白的沙漠小球藻表达系统的构建与鉴定[J].江苏农业科学,2017,45(19):138-142. [43]Zhang J H, Hao Q, Bai L L, et al. Overexpression of the soybean transcription factor GmDof4 significantly enhances the lipid content of Chlorella ellipsoidea[J].Biotechnology for Biofuels,2014,7(1):128. [44]Huang C C, Chen M W, Hsieh J L, et al. Expression of mercuric reductase from Bacillus megaterium MB1 in eukaryotic microalga Chlorella sp.DT:an approach for mercury phytoremediation[J].Applied Microbiology and Biotechnology,2006,72(1):197-205. [45]Yang B, Liu J, Liu B, et al. Development of a stable genetic system for Chlorella vulgaris—a promising green alga for CO2 biomitigation[J].Algal Research,2015,12:134-141. [46]Hawkins R L, Nakamura M. Expression of human growth hormone by the eukaryotic alga, Chlorella[J].Current Microbiology,1999,38(6):335-341. [47]El-Sheekh M M. Stable transformation of the intact cells of Chlorella kessleri with high velocity microprojectiles[J].Biologia Plantarum,1999,42(2):209-216. [48]Chen Y, Li W B, Bai Q H, et al. Study on transient expression of gus gene in Chlorelia ellipsoidea (Chlorophyta) by using biolistic particle delivery system[J].Chinese Journal of Oceanology and Limnology,1998,16(S1):47-49. [49]Zhao X, Meng Z G, Wang Y, et al. Pollen mag-netofection for genetic modification with magnetic nanoparticles as gene carriers[J].Nature Plants,2017,3(12):956-964. [50]Torney F, Trewyn B G, Lin V S Y, et al. Mesoporous silica nanoparticles deliver DNA and chemicals into plants[J].Nature Nanotechnology,2007,2(5):295-300. [51]贾艳晶,郭鑫,成仿云.纳米磁珠介导牡丹花粉转基因技术的初步分析[J].分子植物育种,2020,18(8):2577-2584. [52]Kim D H, Kim Y T, Cho J J, et al. Stable integration and functional expression of flounder growth hormone gene in transformed microalga, Chlorella ellipsoidea[J].Marine Biotechnology,2002,4(1):63-73. [53]冯兴标,李光伟,陈丹阳,等.小球藻表达β胡萝卜素酮化酶基因提高虾青素的量[J].合肥工业大学学报,2019,42(2):267-272. [54]Lin H D, Liu B H, Kuo T T, et al. Knockdown of PsbO leads to induction of HydA and production of photobiological H2 in the green alga Chlorella sp. DT[J].Bioresource Technology,2013,143:154-162. [55]刘晓鹏.绿藻遗传转化体系的优化及转DR5:GFP小球藻的荧光分析[D].长沙:湖南农业大学,2015. [56]Liu J, Sun Z, Gerken H, et al. Genetic engineering of the green alga Chlorella zofingiensis:a modified norflurazon-resistant phytoene desaturase gene as a dominant selectable marker[J].Applied Microbiology and Biotechnology,2014,98(11):5069-5079. [57]康明,韩继刚,刘平芳,等.小球藻病毒基因调控序列在大肠杆菌和真核藻中的调控活性研究[J].生物工程学报,2000,16(4):443-446. [58]Chen Y, Wang Y Q, Sun Y R, et al. Highly efficient expression of rabbit neutrophil peptide-1 gene in Chlorella ellipsoidea cells[J].Current Genetics,2001,39(5/6):365-370. [59]Li S S, Tsai H J. Transgenic microalgae as a non-antibiotic bactericide producer to defend against bacterial pathogen infection in the fish digestive tract[J].Fish & Shellfish Immunology,2009,26(2):316-325. [60]Tokunaga S, Sanda S, Uraguchi Y, et al. Overexpression of the DOF-type transcription factor enhances lipid synthesis in Chlorella vulgaris[J].Applied Biochemistry and Biotechnology,2019,189(1):116-128. [61]王义琴,陈颖,白琴华,等.以小球藻为载体生产兔防御素的研究[J].高技术通讯,2001,11(9):1-5. [62]Cordero B F, Couso I, León R, et al. Enhancement of carotenoids biosynthesis in Chlamydomonas reinhardtii by nuclear transformation using a phytoene synthase gene isolated from Chlorella zofingiensis[J].Applied Microbiology and Biotechnology,2011,91(2):341-351. [63]Rozkov A, Schweder T, Veide A,et al.Dynamics of proteolysis and its influence on the accumulation of intracellular recombinant proteins[J].Enzyme and Microbial Technology,2000,27(10):743-748. |
[1] |
刘盼,贾成霞,杨慕,曲疆奇,张楠,张清靖. 2种微藻对养殖水体中氨氮和亚硝态氮的净化作用[J]. 水产科学, 2018, 37(3): 389-393. |
[2] |
刘启顺,陈玮,左杨,吴树丽,谭海东,曹旭鹏,张付云,尹恒. 酶法提取小球藻藻渣多糖研究[J]. 水产科学, 2018, 37(1): 38-44. |
[3] |
陈炜,梁明明,白永安,李晓东,赵文. 不同施肥条件对土池培育小球藻总脂含量及脂肪酸组成的影响[J]. 水产科学, 2017, 36(2): 188-. |
[4] |
陈炜,梁明明,白永安,李晓东,赵文. 小球藻不同生长时期总脂含量和脂肪酸组成的变化[J]. , 2013, (9): 545-548. |
[5] |
田密,郑贝贝,苏金丽,宋秀梅,王洪斌. 塔胞藻及海水小球藻对草甘膦致毒胁迫的生理应答[J]. , 2013, (9): 541-544. |
[6] |
陈炜,王秀芬,白永安,李晓东,邢殿楼. 干燥方法及保存条件对小球藻粉脂肪酸含量和种类组成的影响[J]. , 2012, 31(2): 89-92. |
[7] |
周波,李晓东,雷衍之,李永函. 低温对两种单胞藻光合放氧和呼吸耗氧速率的影响[J]. , 2012, 31(2): 98-101. |
[8] |
王帅,梁英. 不同浓度的Cd2+、氮及其交互作用对小球藻和微绿球藻生长及叶绿素荧光特性的影响[J]. , 2011, 30(4): 210-214. |
[9] |
刘广丰,陈慧,李家乐,沈和定,林国文,吴文健. 用小球藻进行缢蛏人工繁育技术试验[J]. , 2009, 28(4): 192-195. |
[10] |
吴晓微,孙雪,陆开形,汪一冰,张晓龙. 小球藻psbA基因的克隆与序列分析[J]. , 2008, 27(7): 360-362. |
[11] |
张丽莉,吴垠,孙建明,王国栋. 补充CO2对光生物反应器培养小球藻生长和光合作用的影响[J]. , 2008, 27(11): 570-573. |
[12] |
叶林超,叶均安,徐国忠,刘建新. 碳酸氢铵等不同氮源对小球藻生长的影响[J]. , 2007, 26(6): 319-322. |
[13] |
张继平,郭照良. 小球藻对降低南美白对虾养殖水体中亚硝酸盐氮含量的研究[J]. , 2006, 25(10): 517-519. |
[14] |
孙成渤,王小华,宓慧菁. 单胞藻的生产性培养技术[J]. , 2005, 24(8): 39-40. |
[15] |
王海英,曾晓波,郭祀远. 电磁场对小球藻生理特性的影响及其机理分析[J]. , 2005, 24(7): 12-14. |
|
|
|
|