Regional Characteristics of Bacterial Community and Environmental Influencing Factors in Water of Sea Cucumber Apostichopus japonicus Culture Ponds in Summer
YANG Xiaopei, WANG Luo, XU Hanchen, DING Jun, CHANG Yaqing, HAO Zhenlin
Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
Abstract:A 16S rRNA gene sequencing library of microbial flora was constructed in water samples collected 30 cm from the water surface and 30 cm from the bottom in typical about 0.1 km2 muddy bottom sea cucumber Apostichopus japonicus culture pond water in four regions Changhai, and Yingkou, Liaoning Province, Laoting, Hebei Province and Rushan, Shandong Province in August 2018, where no diet was fed and probiotics was applied using high-throughput sequencing technology and analyzed by bioinformatics analysis method to evaluate the regional differences and commonalities of the water flora in sea cucumber breeding ponds, and the identification of the dominant environmental factors affecting the composition in the water bacterial community. The results showed that the dominant bacterial phyla were primarily found to be Proteobacteria and Bacteroidetes, with relative abundance of 68.64%—89.34%, in the water in the different sea cucumber culture ponds. Proteobacteria was the predominant phylum, with the relative abundance accounting for 51.10%—71.98%. At the genus level, Roseovarius, CandidatusPelagibacter, Kiloniella, and Phaeocystidibacter were the dominant genera in the water in different regions. There were the predominant bacteria in Roseovarius in Changhai, Laoting and Rushan, with relative abundances of 18.68%, 24.65% and 24.46%, respectively. The predominant bacteria in Kiloniella was observed in Yingkou, with relative abundance accounting for 23.07%, indicating that there were significant regional differences of bacterial community in sea cucumber culture pond water in different regions (P<0.05). There was the maximal structural similarity of the composition of bacterial communities in the water of Laoting and Rushan sea cucumber ponds, followed by that in Changhai sea cucumber ponds. The samples in water bacterial community of the Yingkou were clustered together, the specific bacterial phyla in water in Yingkou being mainly belonged to Actinobacteria and Plantomycetes. There were many common bacteria, although the proportion of water bacterial community in different regions was different. In the environmental factors, the dominant environmental factors affecting the water bacterial community were contents of COD and TOC, followed by PO43-, TP and temperature. The findings provide some basic reference for understanding and managing of the bacterial community composition in sea cucumber culture ponds.
[1]Roggatz C C, Mercedes G, Pereira H, et al. A first glance into the nutritional properties of the sea cucumber Parastichopus regalis from the Mediterranean Sea (SE Spain)[J]. Natural Product Research,2017,32(1):116-120. [2]Deng H, He C, Zhou Z, et al. Isolation and pathogenicity of pathogens from skin ulceration disease and viscera ejection syndrome of the sea cucumber Apostichopus japonicus[J]. Aquaculture,2009,287(1/2):18-27. [3]Li L, Chen M, Storey K B. Metabolic response of longitudinal muscles to acute hypoxia in sea cucumber Apostichopus japonicus (Selenka): a metabolome integrated analysis[J]. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics,2009,29:235-244. [4]Tang Y Y, Tao P Y, Tan J G, et al. Identification of bacterial community composition in freshwater aquaculture system farming of Litopenaeus vannamei reveals distinct temperature-driven patterns[J].International Journal of Molecular Sciences,2014,15(8):13663-13680. [5]Michaud L, Lo Giudice A, Troussellier M, et al. Phylogenetic characterization of the heterotrophic bacterial communities inhabiting a marine recirculating aquaculture system[J].Journal of Applied Microbiology,2009,107(6):1935-1946. [6]Blancheton J P, Attramadal K J K, Michaud L, et al. Insight into bacterial population in aquaculture systems and its implication[J]. Aquacultural Engineering,2013,53:30-39. [7]姜燕,曹亚男,柳学周,等.许氏平鲉仔鱼、稚鱼、幼鱼肠道微生物群结构特征[J].水产科学,2020,39(2):200-208. [8]郭小泽,唐艳强,侯玉洁,等.糖蜜对草鱼混养池塘水质和细菌群落结构的影响[J].水产科学,2019,38(5):616-623. [9]Ranjard L, Dequiedt S, Jolivet C, et al. Biogeography of soil microbial communities: a review and a description of the ongoing French national initiative[J]. Agronomy for Sustainable Development,2010,30(2):359-365. [10]Azemar F, Maris T, Mialet B, et al. Rotifers in the Schelde estuary (Belgium): a test of taxonomic relevance[J]. Journal of Plankton Research,2010,32(7):981-997. [11]任丽娟,何聃,邢鹏,等.湖泊水体细菌多样性及其生态功能研究进展[J].生物多样性,2013,21(4):421-432. [12]Sunde M, Sorum H. Self-transmissible multidrug resistance plasmids in Escherichia coli of the normal intestinal flora of healthy swine[J]. Microbial Drug Resistance,2001,7(2):191-196. [13]Suzuki S, Nakanishi S, Tamminen M, et al. Occurrence of Sul and Tet(M) genes in bacterial community in Japanese marine aquaculture environment throughout the year:profile comparison with Taiwanese and Finnish aquaculture waters[J].The Science of the Total Environment,2019,669:649-656. [14]Prairie Y T, del Giorgio P A, Roehm C, et al. Insights on riverine metabolism from continuous measurements of CDOM fluorescence in Eastmain-1 Reservoir, Quebec[J]. Loughborough University of Technology,2010,31(3):223-223. [15]罗金飞,廖永岩,李书迪,等.温度对拟穴青蟹循环水养殖系统微生物群落结构的影响[J].中国水产科学,2020,27(4):393-405. [16]王贤丰,赵艳飞,宋志飞,等.应用高通量测序技术分析拟穴青蟹肠道及其养殖环境菌群结构[J].中国水产科学,2017,24(6):1245-1253. [17]李存玉,徐永江,柳学周,等.池塘和工厂化养殖牙鲆肠道菌群结构的比较分析[J].水产学报,2015,39(2):245-255. [18]黄雪.高温高盐石油采出水中石油烃的生物降解及嗜油功能微生物特性研究[D].北京:北京交通大学,2019. [19]冯叶.低温冲击对异养硝化—好氧反硝化菌HN-02的影响研究[D].成都:西南交通大学,2014. [20]房安富,王旭,苑亮,等.低温条件下提高CAST工艺氨氮硝化能力的研究[J].给水排水,2009,35(2):37-41. [21]刘小博.脱氮除磷系统中污泥沉降性能影响研究[D].西安:西安建筑科技大学,2019. [22]胡安辉.高效短程硝化/厌氧氨氧化富集培养物的研究[D].杭州:浙江大学,2010. [23]秦伟.不同放养密度和水草覆盖度下底埋培养基的克氏原螯虾池塘底泥微生物群落特征[D].上海:上海海洋大学,2015. [24]关晓燕,周遵春,陈仲,等.应用PCR-DGGE指纹技术分析高温季节仿刺参养殖水环境中菌群多样性[J].海洋湖沼通报,2010(1):82-88. [25]窦妍,赵晓伟,丁君,等.应用高通量测序技术分析北方刺参养殖池塘环境菌群结构[J].海洋与湖沼,2016,47(1):122-129. [26]杜佗.刺参大水面养殖系统中菌群、藻相结构的季节变化与益生菌的初步筛选[D].上海:上海海洋大学,2016. [27]Gupta R S. The phylogeny of Proteobacteria: relationships to other eubacterial phyla and eukaryotes[J]. FEMS Microbiology Reviews,2000,24:367-402. [28]刘洋,宋志文,李凌志,等.微生态制剂—生物膜对虾养殖系统水质净化效果研究[J].水生态学杂志,2020,41(1):92-99. [29]Wiese J, Thiel V, Gartner A, et al. Kiloniella laminariae gen. nov. sp. nov. an alphaproteobacterium from the marine macroalga Laminaria saccharina[J]. International Journal of Systematic and Evolutionary Microbiology,2009,59(2):350-356. [30]Jiang J G, Shen Y F. Development of the microbial communities in lake Donghu in relation to water quality[J].Environmental Monitoring and Assessment,2007,127(1/2/3):227-236. [31]Zaikova E, Walsh D A, Stilwell C P, et al. Microbial community dynamics in a seasonally anoxic fjord:Saanich Inlet, British Columbia[J].Environmental Microbiology,2010,12(1):172-191. [32]Shade A, Peter H, Allison S, et al. Fundamentals of microbial community resistance and resilience[J]. Frontiers in Microbiology,2012,3:1-19. [33]Griffiths B, Philippot L. Insights into the resistance and resilience of the soil microbial community[J]. FEMS Microbiology Reviews,2013,37(2):112-129. [34]Sunagawa S, Coelho L, Chaffron S, et al. Structure and function of the global ocean microbiome[J]. Science,2015,348(6237):1261359. [35]徐立蒲.鱼池中二甲基异莰醇和土臭味素的含量、来源及产生影响因素的研究[D].武汉:华中农业大学,2009. [36]梁杰超,季斌,陈威,等.基于Miseq测序的长江中游枯水季水体菌群结构[J].科学技术与工程,2019,19(14):84-89. [37]Fuerst J A. The planctomycetes:emerging models for microbial ecology, evolution and cell biology[J].Microbiology,1995,141(Pt 7):1493-1506. [38]魏琛,陆天友,钟仁超,等.HRT及氮素负荷对厌氧氨氧化系统的影响[J].环境科学学报,2010,30(4):749-755. [39]李媛.厌氧氨氧化工艺启动和运行特性及其受抑机理研究[D].无锡:江南大学,2014. [40]董莲华,孟盈,王晶.转Bt+CpTI基因棉花对根际土壤细菌及氨氧化细菌数量的影响[J].微生物学报,2014,54(3):309-318. [41]王铸.膜生物反应器处理高氨氮废水及其微生物学特性研究[D].南京:南京大学,2015. [42]Isanta E, Bezerra T, Fernández I, et al. Microbial community shifts on an anammox reactor after a temperature shock using 454-pyrosequencing analysis[J]. Bioresource Technology,2015,181:207-213. [43]万甜,何梦夏,任杰辉,等.渭河流域水体细菌群落的环境响应及生态功能预测[J].环境科学,2019,40(8):3588-3595. [44]Wang L, Cheung M K, Kwan H S, et al. Microbial diversity in shallow-water hydrothermal sediments of Kueishan Island, Taiwan as revealed by pyrosequencing[J].Journal of Basic Microbiology,2015,55(11):1308-1318. [45]Si O J, Yang H Y, Hwang C Y, et al. Kiloniella antarctica sp nov. isolated from a polynya of Amundsen Sea in Western Antarctic Sea[J]. International Journal of Systematic and Evolutionary Microbiology,2017,67(7):2397-2402. [46]Zhang R, Weinbauer M G, Tam Y K, et al. Response of bacterioplankton to a glucose gradient in the absence of lysis and grazing[J]. FEMS Microbiology Ecology,2013,85(3):443-451. [47]Shiba T. Roseobacter litoralis gen. nov., sp. nov., and Roseobacter denitrificans sp. nov., aerobic pink-pigmented bacteria which contain bacteriochlorophyll a[J].Systematic and Applied Microbiology,1991,14(2):140-145. [48]Li Y C, Zhou J, Gong B Z, et al. Cometabolic degradation of lincomycin in a Sequencing Batch Biofilm Reactor (SBBR) and its microbial community[J].Bioresource Technology,2016,214:589-595. [49]Guidi F, Pezzolesi L, Vanucci S. Microbial dynamics during harmful dinoflagellate Ostreopsis cf. ovata growth: bacterial succession and viral abundance pattern[J]. Microbiology,2018,7(4):e00584. [50]Maloy A P, Barber B J, Boettcher K J. Use of the 16S-23S rDNA internal transcribed spacer of Roseovarius crassostreae for epizootiological studies of juvenile oyster disease (JOD)[J]. Diseases of Aquatic Organisms,2007,76(2):151-161. [51]Wang L, Li X, Lai Q, et al. Kiloniella litopenaei sp. nov. isolated from the gut microflora of Pacific white shrimp, Litopenaeus vannamei[J]. Antonie Van Leeuwenhoek,2015,108(6):1293-1299. [52]闫法军,田相利,董双林,等.刺参养殖池塘水体微生物群落功能多样性的季节变化[J].应用生态学报,2014,25(5):1499-1505. [53]刘欣. 胶州湾沉积物细菌多样性及菌群时空分布规律研究[D]. 青岛:中国科学院大学(中国科学院海洋研究所),2010. [54]窦妍,丁君,曲凌云,等.秋、 冬季刺参养殖池塘菌群的多样性分析[J].大连海洋大学学报,2015,30(2):143-148. [55]毛玉娇.营养盐和光照对海洋异养细菌利用溶解有机碳的影响[D].厦门:厦门大学,2012. [56]Jin H M, Kim J M, Lee H J, et al. Alteromonas as a key agent of polycyclic aromatic hydrocarbon biodegradation in crude oil-contaminated coastal sediment[J].Environmental Science & Technology,2012,46(14):7731-7740. [57]张晓华.海洋微生物学[M].2版.北京:科学出版社,2016. [58]钟立强,王明华,张世勇,等.南京地区斑点叉尾鮰养殖池塘水体微生物群落结构研究[J].农业环境科学学报,2020,39(7):1594-1604.