Structural Characteristics and Seasonal Changes in Zooplankton Community in Changhu Lake
GONG Sensen1,2, WU Jiawei1,2, CHAI Yi1,2, LUO Jingbo1,2, TAN Fengxia1,2, YANG Deguo3, HE Yongfeng3
1. College of Animal Science, Yangtze University, Jingzhou 434025, China; 2. Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou 434025, China; 3. Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
Abstract:Community structure characteristics and seasonal change in zooplankton were investigated and analyzed in 14 sampling sites in Changhu Lake in April 2015 (Spring), July 2015 (Summer), November 2015 (Autumn) and January 2016 (Winter) by non-metric multi-dimensional scale analysis (NMDS), cluster analysis and redundancy analysis (RDA) according to the water ecosystem observation specification. Results showed that 61 species of zooplankton were identified in this survey, including 29 species of rotifers, 15 species of protozoa, 11 species of cladocera and 6 species of copepods. The descending order of species number in each season was described as summer (43 species) > spring (37 species) > autumn (20 species) > winter (19 species). A total of 12 dominant species were found, including 8 rotifers and 4 protozoa, with common dominant rotifers species Polyarthra trigla and Brachionus calyciflorus in the four seasons. The average seasonal abundance of zooplankton was shown to be 3249 ind./L, with average seasonal biomass of 10.16 mg/L, the maximum abundance and biomass in summer, higher in sampling site HaiZi Lake than that in other sampling sites (except the biomass in autumn), and the average seasonal species replacement rate of up to 81.01% (copepods). The NMDS revealed that there was obvious seasonal difference in zooplankton in the lake, and different dominant groups were classified into four clusters by cluster analysis. The results of RDA ranking of dominant species showed that total nitrogen levels (TN) and total phosphorus levels (TP) were positively correlated with each dominant species to some extent in summer. In addition to being restricted by water temperature, dissolved oxygen and pH, the dominant species were also affected by contents of suspended matter, total nitrogen and total phosphorus. Changhu Lake was still in a moderate-severe eutrophication status, and the degree of eutrophication was tended to increase compared with the data of 2012.
龚森森, 吴嘉伟, 柴毅, 罗静波, 谭凤霞, 杨德国, 何勇凤. 长湖浮游动物群落结构特征及其季节变化[J]. 水产科学, 2021, 40(3): 329-338.
GONG Sensen, WU Jiawei, CHAI Yi, LUO Jingbo, TAN Fengxia, YANG Deguo, HE Yongfeng. Structural Characteristics and Seasonal Changes in Zooplankton Community in Changhu Lake. 水产科学, 2021, 40(3): 329-338.
[1]刘建康.高级水生生物学[M].北京:科学出版社,1999:199-223. [2]段妍,王爱勇,李梦遥,等.辽宁省黄海北部沿岸夏季和秋季浮游动物群落结构[J].水产科学,2016,35(3):215-220. [3]张达娟,孙延斌,毕相东,等.天津港临港工业区附近海域中小型浮游动物群落结构[J].水产科学,2016,35(4):431-435. [4]Xiong W, Ni P, Chen Y Y, et al. Biological consequences of environmental pollution in running water ecosystems: a case study in zooplankton[J]. Environmental Pollution,2019,252(Pt B):1483-1490. [5]Zhang K, Jiang F Y, Chen H, et al. Temporal and spatial variations in zooplankton communities in relation to environmental factors in four floodplain lakes located in the middle reach of the Yangtze River, China[J].Environmental Pollution,2019,251:277-284. [6]段妍,王爱勇,王小林,等.黄海北部春季和夏季浮游动物生态特性与时空分布[J].水产科学,2017,36(4):456-461. [7]彭映辉,简永兴,王建波,等.干旱对湖北省长湖水生植物多样性的影响[J].水生生物学报,2003,27(2):149-154. [8]王亚龙,李昊成,何勇凤,等.长湖5种鲌摄食器官形态学的比较[J].淡水渔业,2016,46(6):26-32. [9]吴翠,史玉虎,胡兴宜,等.浅析长湖湿地资源开发与生态保护[J].湿地科学与管理,2007,3(4):38-40. [10]董艳珍,周淼,聂细荣,等.长湖圆心湖夏季浮游动物群落结构及水质评价[J].凯里学院学报,2017,35(3):112-114. [11]郭坤. 长湖浮游植物生态特征分析及水质评价[D].荆州:长江大学,2017. [12]郝孟曦,杨磊,孔祥虹,等.湖北长湖水生植物多样性及群落演替[J].湖泊科学,2015,27(1):94-102. [13]何勇凤,李昊成,王旭歌,等.长湖鱼类群落结构的时空变化[J].长江流域资源与环境,2016,25(2):265-273. [14]郭坤,彭婷,罗静波,等.长湖浮游动物群落结构及其与环境因子的关系[J].海洋与湖沼,2017,48(1):40-49. [15]梁秀,张翔,刘建峰,等.长湖纳污能力及水产养殖污染负荷估算[J].水资源保护,2015,31(3):78-83. [16]柴毅,彭婷,郭坤,等.海子湖春季浮游植物群落结构与环境因子相关性分析[J].水生态学杂志,2014,35(2):56-62. [17]中国生态系统研究网络科学委员会.水域生态系统观测规范[M].北京:中国环境科学出版社,2007:29-109. [18]赵文.水生生物学[M].2版.北京:中国农业出版社,2016:126-232. [19]王家楫.中国淡水轮虫志[M].北京:科学出版社,1961:24-289. [20]堵南山.中国常见淡水枝角类检索[M].北京:科学出版社,1973:33-89. [21]中国科学院动物研究所甲壳动物研究组.中国动物志节肢动物门 甲壳纲 淡水桡足类[M].北京:科学出版社,1979:297-696. [22]周凤霞,陈剑虹.淡水微型生物图谱[M].2版.北京:化学工业出版社,2011:193-354. [23]宋伦,周遵春,王年斌,等.锦州湾夏季浮游动物的群落特征[J].水产科学,2006,25(8):408-412. [24]卢伍阳,马增岭,徐兆礼,等.春季我国不同纬度河口浮游动物群落变化趋势[J].海洋学报,2016,38(10):83-93. [25]Borcard D, Gillet F, Legendre P. 数量生态学: R语言的应用[M]. 赖江山译. 北京:高等教育出版社,2013:103-178. [26]Hammer Ø, Harper D A T. Paleontological data analysis[M]. Oxford:Wiley-Blackwell,2006. [27]Guo K, Wu N C, Wang C, et al. Trait dependent roles of environmental factors, spatial processes and grazing pressure on lake phytoplankton metacommunity[J].Ecological Indicators,2019,103:312-320. [28]张民,阳振,史小丽.太湖蓝藻水华的扩张与驱动因素[J].湖泊科学,2019,31(2):336-344. [29]Almeida V L D S, de Larrazábal M E L, Moura A D N, et al. Rotifera das zonas limnética e litorânea do reservatório de Tapacurá, Pernambuco, Brasil[J].Iheringia Série Zoologia,2006,96(4):445-451. [30]林青,由文辉,徐凤洁,等.滴水湖浮游动物群落结构及其与环境因子的关系[J].生态学报,2014,34(23):6918-6929. [31]姚佳玫,刘明亮,何剑波,等.富春江水库浮游植物调查与富营养评价[J].浙江树人大学学报(自然科学版),2014(2):45-48. [32]高文燕,李培伦,李喆,等.小龙虎泡浮游动物组成与环境因子相关性分析[J].水产科学,2019,38(6):839-845. [33]吴晓敏,郝瑞娟,潘宏博,等.黄浦江浮游动物群落结构及其与环境因子的关系[J].生态环境学报,2018,27(6):1128-1137. [34]朱冲冲,李秋华,陈文生,等.贵州草海后生浮游动物群落季节动态特征及与环境因子的关系[J].生态科学,2018,37(6):131-138. [35]魏洪祥,石俊艳,王晓光,等.卧龙湖浮游生物群落的演替、影响因子及其水质评价[J].生态科学,2018,37(1):55-61. [36]吴丹.淀山湖浮游植物优势种群演替及其影响因子的研究[D].上海:上海师范大学,2018. [37]魏志兵,柴毅,罗静波,等.长湖浮游植物优势种季节演替及生态位分析[J].水生生物学报,2020,44(3):612-621.