Screening and Characteristic Analysis of Mitochondrial Genome SNPs in Ridgetail White Prawn Exopalamon carinicauda
ZHU Jixuan1, DAI Qin1, DUAN Jiancheng1, GAO Na1, GAO Wei1, YAN Binlun1,2, GAO Huan1,2,3
1. Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; 2. Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Lianyungang 222005, China; 3. The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
Abstract:The potential SNP sites of ridgetail white prawn Exopalaemon carinicauda were screened to obtain single nucleotide polymorphisms (SNP) sites in the mitochondrial genome (mtDNA) of ridgetail white prawn with average body length of (5.23±0.33) cm collected from the culture ponds in coastal areas of Lianyungang and Nantong, Jiangsu Province, using high-resolution melting curve (HRM) technology by 109 pairs of primers designed based on the full sequence of mtDNA. HRM analysis showed that the amplification products of 9 pairs of primers in 80 pairs contained SNP sites, which contained 16 SNPs in total. Statistical results showed that the SNP sites in the mitochondrial genome of ridgetail white prawn were haplotypes with a frequency of 0.10/100 bp, among which the transformation mutations (G/A and C/T) accounted for 87.5% of the total SNPs, and the translation mutations (A/T) accounted for 12.5%, without insertion, deletion and other mutations. Location analysis revealed that the 16 SNPs obtained were distributed in COX1, cob, COX2, tRNAAsp, nad1, nad4, and nad5. In the 7 regions, there was the maximal SNPs in the COX1 gene region, with 5 SNP sites, followed by 3 SNP sites in the cob region. Moreover, further comparison of the corresponding amino acids encoded by SNPs showed that the synonymous SNP accounts for 43.7% of the total number, while the non synonymous SNP accounts for 56.3%, which may lead to changes in the properties and functions of proteins. The screening of SNPs in this study will be helpful for the further work of pedigree identification and genetic diversity analysis of ridgetail white prawn.
[1]王淑新,连林生.单核苷酸多态性作为新一代分子标记的优越性[J].中国畜牧兽医,2008,35(4):31-33. [2]王晨阳,王璐,张锐虎,等.SNP标记在动物遗传育种及人类疾病动物模型研究中的应用[J].中国比较医学杂志,2019,29(4):120-125. [3]刘敬文.凡纳滨对虾免疫基因SNPs开发及其与WSSV抗性的关联分析[D].青岛:中国科学院研究生院(中国科学院海洋研究所),2014. [4]赵莲,李志辉,张培,等.三疣梭子蟹线粒体基因组SNP在增殖放流家系识别中的应用[J].渔业科学进展,2018,39(2):156-163. [5]代平.文蛤(Meretrix meretrix)选育群体的遗传测定及生长相关SNP鉴定[D].青岛:中国科学院研究生院(中国科学院海洋研究所),2014. [6]李运东.斑节对虾生长性状相关基因克隆及其SNP位点的筛选与验证[D].上海:上海海洋大学,2016. [7]Zhang D Z, Tang B P, Ding G, et al. Molecular authentication of the fashionable dainty Eriocheir japonicasinensis based on mitochondrial DNA bar coding[J].European Food Research and Technology,2009,230(1):173-178. [8]李宏俊,梁瑜,邢坤,等.紫贻贝EST-SNP的筛选及多态性检测[J].水产学报,2011,35(3):348-355. [9]梁俊平,李健,李吉涛,等.脊尾白虾全人工繁育技术初步研究[J].水产科学,2017,36(3):290-295. [10]Zhang J Q, Gui T S, Wang J, et al. The ferritin gene in ridgetail white prawn Exopalaemon carinicauda:cloning, expression and function[J].International Journal of Biological Macromolecules,2015,72:320-325. [11]陈高峰,章显武,黄景选,等.脊尾白虾池塘生态育苗及养殖技术[J].科学养鱼,2019(2):32-33. [12]刘俊杰.三疣梭子蟹与脊尾白虾生态养殖模式[J].科学养鱼,2016(9):32-33. [13]王日芳.脊尾白虾近交系遗传多样性的微卫星分析[D].上海:上海海洋大学,2016. [14]贾舒雯,刘萍,李健,等.脊尾白虾3个野生群体遗传多样性的微卫星分析[J].水产学报,2012,36(12):1819-1825. [15]卞光明,胡则辉,柴学军,等.SNP标记技术及其在水产动物遗传学中的应用[J].浙江海洋学院学报(自然科学版),2016,35(4):346-353. [16]金玉琳.长牡蛎SNP标记开发及其在家系分析和物种鉴定中的应用[D].青岛:中国海洋大学,2014. [17]梁俊平,李健,刘萍,等.脊尾白虾生物学特性与人工繁育的研究进展[J].中国农学通报,2012,28(17):109-116. [18]任亮,苏玉虹,巴彩凤,等.PCR引物设计技巧[J].现代畜牧兽医,2005(6):49. [19]赵莲,李志辉,张培,等.三疣梭子蟹线粒体基因组单核苷酸多态性[J].水产学报,2018,42(2):196-203. [20]White H E, Hall V J, Cross N C P. Methylation-sensitive high-resolution melting-curve analysis of the SNRPN gene as a diagnostic screen for Prader-Willi and Angelman syndromes[J].Clinical Chemistry,2007,53(11):1960-1962. [21]Al-Koofee D A F, Ismael J M, Mubarak S M H. RETRACTED:point mutation detection by economic HRM protocol primer design[J].Biochemistry and Biophysics Reports,2019,18:100628. [22]Kim H K, Lee M, Lee M, et al. Identification of a single nucleotide polymorphism (SNP) marker for the detection of enhanced honey production in hoenybee[J].Journal of Apiculture,2017,32(3):147-154. [23]吴波,杨润婷,朱世平,等.宽皮柑橘单核苷酸多态性的高分辨率熔解曲线分型[J].园艺学报,2012,39(4):777-782. [24]Li S Z, Wan H R, Ji H Y, et al. SNP discovery based on CATS and genotyping in the finless porpoise (Neophocaena phocaenoides)[J].Conservation Genetics,2009,10(6):2013-2019. [25]王宝安,姚新华.脊尾白虾春季繁殖力的观测[J].天津水产,1996(1):58. [26]王敏强,崔志峰,刘晓玲,等.2种三疣梭子蟹居群线粒体Cyt b和S-rRNA基因片段序列变异研究[J].烟台大学学报(自然科学与工程版),2008,21(3):191-196. [27]Xia X H, Hafner M S, Sudman P D. On transition bias in mitochondrial genes of pocket gophers[J].Journal of Molecular Evolution,1996,43(1):32-40. [28]刘九美,李吉涛,刘萍,等.脊尾白虾(Exopalaemoncarinicauda)回交家系遗传变异的微卫星分析[J].渔业科学进展,2017,38(3):133-139. [29]于海洋.牙鲆微卫星标记的筛选和美洲牡蛎抗病相关基因SNP的初步分析[D].青岛:中国海洋大学,2010.