Nitrogen and Phosphorus Budgets of Polyculture System of Mud Crab Scylla paramamosain, Tiger Shrimp Penaeus monodon and Razor Clam Sinonovacula constricta
ZHAO Yanfei1, ZHONG Shengping1, WANG Xianfeng2, HUANG Lingguang1, LIU Xujia1, XIONG Xiangying1
1. Guangxi Institute of Oceanology Co., Ltd., Beihai 536000, China; 2. National Sea Area DynamicSupervising Center of Haicheng District, Beihai 536000, China
Abstract:The ternary polyculture models of mud crab Scylla paramamosain, tiger shrimp Penaeus monodon and razor clam Sinonovacula constricta were investigated in land-based perigrid experiments in seawater ponds at stocking density of 35 individuals of mud crab and 300 individuals of tiger shrimp (as a control, CS) with 5 different proportions of razor clam including 250 (CSR1), 500 (CSR2), 1000 (CSR3), 2000 (CSR4), and 4000 (CRS5) individuals. In the feeding trial, budgets and utilization rates of nitrogen and phosphorus were analyzed by one-way ANOVA and multiple comparisons. The results showed that the feed was the main input of nitrogen (accounting for 84.02%—86.31%) and phosphorus (accounting for 98.08%—98.83%) in the enclosures, the main output of nitrogen (accounting for 44.21%—56.40%) and phosphorus (accounting for 50.38%—60.96%) were in the sediments. Under different models, there were differences in sizes, survival rate, specific growth rate, yield and output value of the cultured organisms, in which the maximal benefits were observed in CSR3 and CSR4 groups. The nitrogen utilization rates of each group ranged from 12.35% to 32.66%, and CSR5>CSR3, CSR4>CSR1, CSR2>CS, showed significant differences (P<0.05). The phosphorus utilization rates were ranged from 9.38% to 23.10%, CSR3, CSR4, CSR5>CS, CSR1, CSR2, with significant differences (P<0.05), indicating that the addition of an appropriate amount of razor clam in the polyculture system of shrimp and crab improved the breeding efficiency and the utilization rates of nitrogen and phosphorus significantly. In conclusion, CSR3 treatment group was the most reasonable, followed by CSR4. Under the conditions of this experiment, the optimal collocation was crab at 35 individuals/25 m2, shrimp at 300 individuals/25 m2 and razor clam at 1000 individuals/25 m2.
[1]王桂忠,李少菁,陈志刚.青蟹(Scylla spp.)养殖现状及拟穴青蟹(S. paramamosain)种群生物学研究[J].厦门大学学报(自然科学版),2016,55(5):617-623. [2]史思,王春琳.基于SWOT分析的我国青蟹养殖产业发展对策探讨[J].现代化农业,2019(11):58-61. [3]朱小明,林伟山,朱红梅,等.池塘生态综合养殖结构的调查分析[G]//王清印.多营养层次的海水综合养殖.北京:海洋出版社,2011:602-609. [4]陈贤龙,潘雪央.青蟹与斑节对虾半咸水池塘高效生态混养技术试验[J].科学养鱼,2014(6):29-31. [5]张哲,穆峰,马甡.太平洋牡蛎(Crassostrea gigas)对虾池水质的影响[J]. 中国海洋大学学报(自然科学版),2002,32(增刊):24-29. [6]Widdows J, Brinsley M D, Bowley N, et al. A benthic annular flume for in situ measurement of suspension feeding/biodeposition rates and erosion potential of intertidal cohesive sediments[J]. Estuarine, Coastal and Shelf Science,1998,46(1):27-38. [7]Haven D S, Morales-Alamo R. Biodeposition as a factor in sedimentation of fine suspended solids in estuaries[G]// Nelson B W. Environmental Framework of Coastal Plain Estuaries. Boulder:The Geological Society of America,1972,133:121-130. [8]张凯,田相利,董双林,等.三疣梭子蟹、凡纳滨对虾和菲律宾蛤仔混养系统氮磷收支的研究[J].中国海洋大学学报(自然科学版),2015,45(2):44-53. [9]Hargreaves J A. A simulation model of ammonia dynamics in commerical catfish ponds in the southeastern United States[J]. Aquacultural Engineering,1997,16(1/2):27-43. [10]舒廷飞,温琰茂,陆雍森,等.网箱养殖N、P物质平衡研究——以广东省哑铃湾网箱养殖研究为例[J].环境科学学报,2004,24(6):1046-1052. [11]Acosta-Nassar M V, Morell J M, Corredor J E. The nitrogen budget of a tropical semi-intensive freshwater fish culture pond[J]. Journal of the World Aquaculture Society,1994,25(2):261-270. [12]刘永士,臧维玲,戴习林,等.室内不同水位养殖凡纳滨对虾的生长及养殖系统氮磷收支[J].湖南农业大学学报(自然科学版),2011,37(5):526-530. [13]李玉全,李健,王清印,等.养殖密度对工厂化对虾养殖池氮磷收支的影响[J].中国水产科学,2007,14(6):926-931. [14]Krom M D, Porter C, Gordin H. Nutrient budget of a marine fish pond in Eilat,Israel[J].Aquaculture,1985,51(1):65-80. [15]国家海洋局908专项办公室.海洋化学调查技术规程[M].北京:海洋出版社,2006. [16]扈传昱,王正方,吕海燕.海水和海洋沉积物中总磷的测定[J].海洋环境科学,1999,18(3):48-52. [17]Green B W, Boyd C E. Chemical budgets for organically fertilized fish ponds in the dry tropics[J]. Journal of the World Aquaculture Society,1995,26(3):284-296. [18]齐振雄,张曼平.对虾养殖池塘氮磷收支的实验研究[J].水产学报,1998,22(2):124-128. [19]常杰,田相利,董双林,等.对虾、青蛤和江蓠混养系统氮磷收支的实验研究[J].中国海洋大学学报(自然科学版),2006,36(增刊):33-39. [20]高杉,吴立新,姜志强,等.牙鲆和贝类混养池塘中氮、磷收支的研究[J].大连海洋大学学报,2011,26(3):203-208. [21]Briggs M R P, Fvnge-Smith S J. A nutrient budget of some intensive marine shrimp ponds in Thailand[J].Aquaculture Research,1994,25(8):789-811. [22]施振宁,柏张春.混养锦鲤对微咸水凡纳滨对虾池水质及产量的影响[J].水产科学,2011,30(9):568-571. [23]王吉桥,罗鸣,马成学,等.低盐水体南美白对虾与鲢鳙鱼混养的试验[J].水产科学,2003,22(6):21-24. [24]李志斐,王广军,谢骏,等.对虾混养技术研究进展[J].水产科学,2017,36(5):683-687. [25]黄红宣,胡雪怡,吴维鹏,等.生态综合养殖池塘氮磷沉积研究[J].集美大学学报(自然科学版),2014,19(3):173-178. [26]Shpigel M, Neori A, Popper D M, et al. A proposed model for “environmentally clean” land-based culture of fish, bivalves and seaweeds[J]. Aquaculture,1993,117(1/2):115-128. [27]李德尚,董双林.对虾与鱼、贝类封闭式综合养殖的实验研究[J].海洋与湖沼,2002,33(1):90-96. [28]王申,高珊珊,蒋力,等.水产养殖系统氮磷营养盐收支及其生态影响研究[J].水产学杂志,2018,31(5):50-57. [29]Neori A, Shpigel M, Ben-Ezra D. A sustainable integrated system for culture of fish, seaweed and abalone[J]. Aquaculture,2000,186(3/4):279-291. [30]许忠能,林小涛,林钦,等.江蓠对对虾排出氮磷的吸收[J].环境科学学报,2004,24(6):1059-1065.