Establishment of a Cas13a-RPA Detection Method for the Causative Pathogen Vibrio splendidus of Sea Cucumber Apostichopus japonicus Skin Ulcerative Syndrome
LIU Ji, CHEN Yanru, HOU Zhumei, XU Dongxue, GU Yuanxue, SONG Wenqi, SONG Yize, XIA Bin
School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
Abstract:In order to prevent and control the skin ulcerative syndrome (SUS) of sea cucumber Apostichopusjaponicus caused by Vibriosplendidus and maintain the healthy and sustainable development of the sea cucumber aquaculture industry, this study used the characteristic of LwCas13a protein when specific crRNA in LwCas13a binds to the target RNA, its collateral cleavage activity can be activated to degrade non-targeted exogenous RNA. Combined this characteristic with the recombinase polymerase amplification (RPA) technique, a rapid, sensitive and specific quantitative detection method for gyrB gene of V. splendidus—RPA-Cas13a was established. This method can realize rapid real-time detection of V. splendidus at constant 37 ℃ within 60 mins. Sensitivity test showed that the detection limit of this method is 550 copies/μL(gyrB), which is consistent with the sensitivity level of fluorescence quantitative PCR (qPCR); Specificity test demonstrated a relatively high specificity with the fact that it had no cross-reactions with other Vibrio species, e.g. V. vulnificus, V. harveyi and V. anguillarum, and other common aquatic animal bacterial pathogens, including Pseudoalteromonas nigrifaciens, Aeromonashydrophlia and Edwardsiellatarda. The detection rate of 57 environmental samples including skin mucus of A. japonicus (32 samples), culture pond seawater (15 samples) and surface sediments (10 samples) was 8.77%, highly consistent with that of traditional fluorescence qPCR method (Kappa=1.00) with no statistical difference (P>0.05). In conclusion, this study established a novel rapid, simple, sensitive and specific RPA-Cas13a quantitative detection method for V. splendidus, which provides a powerful molecular tool for preventing and controlling the occurrence of sea cucumber SUS
[1]农业农村部渔业渔政管理局,全国水产技术推广总站,中国水产学会.2021中国渔业统计年鉴[M].北京:中国农业出版社,2021. [2]王印庚,荣小军,张春云,等.养殖刺参暴发性疾病——“腐皮综合症”的初步研究与防治[J].齐鲁渔业,2004,21(5):44-47. [3]THOMSON R, MACPHERSON H L, RIAZA A, et al. Vibrio splendidus biotype 1 as a cause of mortalities in hatchery-reared larval turbot, Scophthalmus maximus (L.)[J].Journal of Applied Microbiology,2005,99(2):243-250. [4]LIU R, QIU L M, YU Z A, et al. Identification and characterisation of pathogenic Vibrio splendidus from Yesso scallop (Patinopecten yessoensis) cultured in a low temperature environment[J].Journal of Invertebrate Pathology,2013,114(2):144-150. [5]BECKER P, GILLAN D, LANTERBECQ D, et al. The skin ulceration disease in cultivated juveniles of Holothuria scabra (Holothuroidea, Echinodermata)[J].Aquaculture,2004,242(1/2/3/4):13-30. [6]张春云,王印庚,荣小军.养殖刺参腐皮综合征病原菌的分离与鉴定[J].水产学报,2006,30(1):118-123. [7]DENG H, HE C B, ZHOU Z C, et al. Isolation and pathogenicity of pathogens from skin ulceration disease and viscera ejection syndrome of the sea cucumber Apostichopus japonicus[J].Aquaculture,2009,287(1/2):18-27. [8]李成华.刺参腐皮综合征发生的分子调控机制研究进展[J].大连海洋大学学报,2021,36(3):355-373. [9]孙红娟,郑智亮,王际辉,等.仿刺参MyD88依赖途径基因的序列比较和表达分析[J].水产科学,2020,39(1):22-29. [10]陈仲,蒋经伟,高杉,等.不同病原菌刺激后仿刺参幼参体腔细胞中免疫相关酶的应答变化[J].水产科学,2018,37(3):295-300. [11]李亚晨,包永明,吕建发,等.海洋水产动物弧菌病的生物防治[J].水产科学,2004,23(2):35-38. [12]宋立超,樊景凤,刘述锡,等.病原性海洋弧菌快速检测方法的研究进展[J].海洋环境科学,2005,24(1):65-69. [13]谢建军,王印庚,张正,等.养殖刺参腐皮综合征两种致病菌Dot-ELISA快速检测[J].海洋科学,2007,31(8):59-64. [14]张凤萍,王印庚,李胜忠,等.应用PCR方法检测刺参腐皮综合征病原——灿烂弧菌[J].海洋水产研究,2008,29(5):100-106. [15]王印庚,张凤萍,李胜忠,等.刺参腐皮综合征病原灿烂弧菌检测探针的制备及应用[J].水产学报,2009,33(1):119-125. [16]JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J].Science,2012,337(6096):816-821. [17]GOOTENBERG J S, ABUDAYYEH O O, LEE J W, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2[J].Science,2017,356(6336):438-442. [18]KELLNER M J, KOOB J G, GOOTENBERG J S, et al. SHERLOCK:nucleic acid detection with CRISPR nucleases[J].Nature Protocols,2019,14(10):2986-3012. [19]MYHRVOLD C, FREIJE C A, GOOTENBERG J S, et al. Field—deployable viral diagnostics using CRISPR-Cas13[J].Science,2018,360(6387):444-448. [20]CHEN Y, YANG S X, PENG S, et al. N1-methyladenosine detection with CRISPR-Cas13a/C2c2[J].Chemical Science,2019,10(10):2975-2979. [21]LIU Y F, XU H P, LIU C, et al. CRISPR-Cas13a nanomachine based simple technology for avian influenza A (H7N9) virus on-site detection[J].Journal of Biomedical Nanotechnology,2019,15(4):790-798. [22]QIN P W, PARK M, ALFSON K J, et al. Rapid and fully microfluidic Ebola virus detection with CRISPR-Cas13a[J].ACS Sensors,2019,4(4):1048-1054. [23]SHAN Y Y, ZHOU X M, HUANG R, et al. High-fidelity and rapid quantification of miRNA combining crRNA programmability and CRISPR/Cas13a trans-cleavage activity[J].Analytical Chemistry,2019,91(8):5278-5285. [24]LE ROUX F, GAY M, LAMBERT C, et al. Phylogenetic study and identification of Vibrio splendidus-related strains based on gyrB gene sequences[J].Diseases of Aquatic Organisms,2004,58:143-150. [25]胡学峰,石存斌,潘厚军,等.海水养殖斜带石斑鱼溃疡病病原菌(溶藻弧菌)的初步研究[J].中国海洋大学学报(自然科学版),2005,35(2):232-236. [26]郝云婕,韩素贞.gyrB基因在细菌系统发育分析中的应用[J].生物技术通报,2008(2):39-41. [27]SUN H J, ZHOU Z C, DONG Y, et al. Expression analysis of microRNAs related to the skin ulceration syndrome of sea cucumber Apostichopus japonicus[J].Fish & Shellfish Immunology,2016,49:205-212. [28]ZHANG Z, ZHANG W W, HU Z G, et al. Environmental factors promote pathogen-induced skin ulceration syndrome outbreak by readjusting the hindgut microbiome of Apostichopus japonicus[J].Aquaculture,2019,507:155-163. [29]ABUDAYYEH O O, GOOTENBERG J S, KONERMANN S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J].Science,2016,353(6299):aaf5573. [30]SASHITAL D G. Pathogen detection in the CRISPR-Cas era[J].Genome Medicine,2018,10(1):32. [31]CHEN J S, MA E B, HARRINGTON L B, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity[J].Science,2018,360(6387):436-439. [32]CHANG Y F, DENG Y, LI T Y, et al. Visual detection of porcine reproductive and respiratory syndrome virus using CRISPR-Cas13a[J].Transboundary and Emerging Diseases,2020,67(2):564-571. [33]于永翔,王印庚,刘智超,等.基于gyrB基因的SYBR Green Ⅰ实时定量PCR检测病原灿烂弧菌[J].渔业科学进展,2014,35(3):134-142. [34]杨少丽,王印庚,董树刚.海水养殖鱼类弧菌病的研究进展[J].海洋水产研究,2005,26(4):75-83. [35]THOMPSON C C, VICENTE A C P, SOUZA R C, et al. Genomic taxonomy of vibrios[J].BMC Evolutionary Biology,2009,9:258.