Genetic Mechanisms Underlying Inbreeding Depression of F1 Generation in Yesso Scallop Patinopecten yessoensis
ZHAO Liang1,2,3,4, LI Yangping4, GAO Shan1,2,3, JIANG Pingzhe1,2,3, LIN Shanshan1,2,3, ZHANG Guohan1,2,3, FAN Guangqi1,2,3, JIANG Jingwei1,2,3, ZHOU Zunchun1,2,3
1. Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China; 2. Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Dalian 116023, China; 3. Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Province, Dalian 116023, China; 4. Ocean University of China, Qingdao 266100, China
Abstract:In order to clarify phenomenon and genetic regulatory mechanism of inbreeding depression in yesso scallop Patinopecten yessoensis in the phenotypic level, experimental groups and control groups of yesso scallop with inbreeding coefficients of 0.5, 0.25, and 0 were constructed. At the same time,seven fitness traits were selected through tracking from the larval stage to the 530 days old adult stage, and a fitness index evaluation method based on inbreeding depression was constructed using principal component analysis.In the genomic level, whole-genome resequencing was performed on the parents of a self-fertilization lineage and 21 offsprings for segregation distortion analysis. It was found that the inbreeding depression rate in the self-fertilization group was 1.31—3.05 times during the larval stage,higher than that in the inbred group. In the adult stage, the trend was similar to that in the larval stage, with the inbreeding depression rate of 0.97—7.29 times in the self-fertilization group, higher than that in the inbred group. However, only the self-fertilization group maintained a low inbreeding depression rate (1.65%—2.56%) in growth traits during the larval stage. In the adult stage, the self-fertilization group and most of the inbred groups did not experienced any depression, indicating that inbreeding depression mainly occurs in survival traits. A total of 1 253 519 SNPs were genotyped for biased segregation analysis, with 99% of the SNPs exhibiting significant segregation distortion in the offspring, 23% of gametic segregation, and 77% of zygotic segregation. In zygotic segregation, 89% was due to heterozygote excess, indicating that overdominance effect was at work, and only 10% was affected by dominant effects as a result of homozygote loss. The findings indicate that overdominance effect and segregation distortion play a dominant role in inbreeding depression of yesso scallop F1, not only explores biased segregation in self-fertilized offspring of yesso scallop, but also provide important reference for the genetic mechanism of inbreeding depression in aquatic animals.
[1] CHARLESWORTH D, WILLIS J H. The genetics of inbreeding depression[J]. Nature Reviews Genetics,2009,10(11):783-796. [2] STOFFEL M A, JOHNSTON S E, PILKINGTON J G, et al. Genetic architecture and lifetime dynamics of inbreeding depression in a wild mammal[J]. Nature Communications,2021,12(1):1-10. [3] SCHOEN D J, BALDWIN S J. Self-incompatibility and the genetic architecture of inbreeding depression[J]. New Phytologist,2022,237(3):1040-1049. [4] KARDOS M, ZHANG Y L, PARSONS K M, et al. Inbreeding depression explains killer whale population dynamics[J]. Nature Ecology & Evolution,2023,7(5):675-686. [5] GJERDE B, GUNNES K, GJEDREM T. Effect of inbreeding on survival and growth in rainbow trout[J]. Aquaculture,1983,34(3/4):327-332. [6] JESÚS F, BEATRIZ V, ANGEL T M. Optimum mating designs for exploiting dominance in genomic selection schemes for aquaculture species[J]. Genetics Selection Evolution,2021,53(1):14. [7] CROSBY LONGWELL A, STILES S S. Gamete cross incompatibility and inbreeding in the commercial American oyster, Crassostrea virginicaGmelin[J]. Cytologia,1973,38(3):521-533. [8] EVANS F, MATSON S, BRAKE J, et al. The effects of inbreeding on performance traits of adult Pacific oysters (Crassostrea gigas)[J]. Aquaculture,2004,230(1/2/3/4):89-98. [9] IBARRA A M, CRUZ P, ROMERO B A. Effects of inbreeding on growth and survival of self-fertilized Catarina scallop larvae, Argopecten circularis[J]. Aquaculture,1995,134(1/2):37-47. [10] 张国范,刘述锡,刘晓,等. 海湾扇贝自交家系的建立和自交效应[J]. 中国水产科学,2003,10(6):441-445. [11] ZHAO L, LI Y P, LOU J R, et al. Transcriptomic profiling provides insights into inbreeding depression in yesso scallop Patinopectenyessoensis[J]. Marine Biotechnology,2019,21(5):623-633. [12] 傅强,王师,赵亮,等. 不同近交系数的虾夷扇贝近交衰退研究[J]. 中国海洋大学学报(自然科学版),2015,45(11):43-48. [13] NICKOLAS H, HARRISON P A, TILYARD P, et al. Inbreeding depression and differential maladaptation shape the fitness trajectory of two co-occurring Eucalyptus species[J]. Annals of Forest Science,2019,76(1):1-13. [14] PEKKALA N, KNOTT K E, KOTIAHO J S, et al. The effect of inbreeding rate on fitness, inbreeding depression and heterosis over a range of inbreeding coefficients[J]. Evolutionary Applications,2014,7(9):1107-1119. [15] FOWLER K, WHITLOCK M C. The variance in inbreeding depression and the recovery of fitness in bottlenecked populations[J]. Proceedings of the Royal Society of London Series B:Biological Sciences,1999,266(1433):2061-2066. [16] ZHANG C Z, WANG P, TANG D, et al. The genetic basis of inbreeding depression in potato[J]. Nature Genetics,2019,51(3):374-378. [17] PENNISI E. Epigenetics linked to inbreeding depression[J]. Science,2011,333(6049):1563. [18] REYNOLDS E G M, NEELEY C, LOPDELL T J, et al. Non-additive association analysis using proxy phenotypes identifies novel cattle syndromes[J]. Nature Genetics,2021,53(7):949-954. [19] OUYANG Y D, LI X, ZHANG Q F. Understanding the genetic and molecular constitutions of heterosis for developing hybrid rice[J]. Journal of Genetics and Genomics,2022,49(5): 385-393. [20] CARR D E, DUDASH M R. Recent approaches into the genetic basis of inbreeding depression in plants[J]. Philosophical Transactions of the Royal Society of London. Series B:Biological Sciences,2003,358(1434):1071-1084. [21] SAMAYOA L F, OLUKOLU B A, YANG C J, et al. Domestication reshaped the genetic basis of inbreeding depression in a maize Landrace compared to its wild relative, teosinte[J]. PLoS Genetics,2021,17(12):e1009797. [22] GAFFNEY P M, SCOTT T M. Genetic heterozygosity and production traits in natural and hatchery populations of bivalves[J]. Aquaculture,1984,42(3/4):289-302. [23] 毛俊霞.海湾扇贝(Argopecten irradians)♀×紫扇贝(Argopecten purpuratus)♂杂种优势遗传基础的研究[D].青岛:中国海洋大学,2015. [24] 傅强.虾夷扇贝(Patinopecten yessoensis)近交衰退的生物学效应及遗传机理研究[D].青岛:中国海洋大学,2014. [25] 梁峻. 虾夷扇贝养殖群体数量性状遗传研究[D]. 青岛:中国科学院研究生院(海洋研究所), 2009:37-39. [26] SAMBROOK J, FRITSCH E F, MANIATIS T. Molecular cloning[M].New York:Cold Spring Harbor Laboratory Press,1989. [27] KOBOLDT D C, ZHANG Q Y, LARSON D E, et al.VarScan 2:somatic mutation and copy number alteration discovery in cancer by exome sequencing[J].Genome Research,2012,22(3):568-576. [28] JOHNSTON M O, SCHOEN D J. On the measu-rement of inbreeding depression[J]. Evolution,1994,48(5):1735. [29] DEROSE M A, ROFF D A. A comparison of inbreeding depression in life-history and morphological traits in animals[J]. Evolution,1999,53(4):1288-1292. [30] LYNCH M, WALSH B. Genetics and analysis of quantitative traits[M]. Sunderland:Sinauer Associates,1998:288-289. [31] ROUSH R T, DALY J C. The role of population genetics in resistance research and management[M]// ROUSH R T, TABASHNIK B E. Pesticide Resistance in Arthropods. New York:Springer New York, 1990:97-152. [32] ANDOW D A, ZWAHLEN C. Assessing environmen-tal risks of transgenic plants[J]. Ecology Letters,2006,9(2):196-214. [33] WARWICK S I, BECKIE H J, HALL L M. Gene flow, invasiveness, and ecological impact of genetically modified crops[J]. Annals of the New York Academy of Sciences,2009,1168(1):72-99. [34] 刘超.温度对底播虾夷扇贝适合度性状影响的研究[D].青岛:中国科学院研究生院(海洋研究所),2016. [35] 王峥峰,傅声雷,任海,等.近交衰退:我们检测到了吗[J].生态学杂志,2007,26(2):245-252. [36] 朱盛林,万全,李飞,等.大鳞副泥鳅的繁殖力测定及人工繁殖[J].现代农业科技,2007(13):171-172. [37] 张景晓.长牡蛎近交家系生物学特性及遗传多样性分析[D].青岛:中国海洋大学,2015. [38] 张海滨.海湾扇贝近交生物学效应和遗传改良研究[D].青岛:中国科学院研究生院(海洋研究所),2005. [39] 罗坤,孔杰,栾生,等.中国对虾选育群体与近交群体不同生长时期的生长性状和存活率的比较[J].中国海洋大学学报(自然科学版),2014,44(7):51-57. [40] LU H, ROMERO-SEVERSON J, BERNARDO R. Chromosomal regions associated with segregation distortion in maize[J]. Theoretical and Applied Genetics,2002,105(4):622-628. [41] SANDLER L, NOVITSKI E. Meiotic drive as an evolutionary force[J]. The American Naturalist,1957,91(857):105-110. [42] KOCHER T D, LEE W J, SOBOLEWSKA H, et al. A genetic linkage map of a cichlid fish, the tilapia (Oreochromis niloticus)[J]. Genetics,1998,148(3):1225-1232. [43] LI Y T, BYRNE K, MIGGIANO E, et al. Genetic mapping of the kuruma prawn Penaeus japonicus using AFLP markers[J]. Aquaculture,2003,219(1/2/3/4):143-156. [44] 李朝霞.中国对虾人工选育群体遗传结构分析及遗传连锁图谱的构建[D].青岛:中国海洋大学,2006. [45] 刘博.中国对虾“黄海1号”遗传连锁图谱构建及生长相关QTL定位[D].青岛:中国海洋大学,2009. [46] 王宇,李莉,张守都,等.海湾扇贝杂交、近交和自交家系的微卫星标记偏分离分析[J].海洋科学,2012,36(8):109-115. [47] 李宏俊. 海湾扇贝微卫星标记的开发及遗传连锁图谱的构建[D]. 青岛:中国科学院研究生院(海洋研究所),2009. [48] 战爱斌.栉孔扇贝(Chlamys farreri)微卫星标记的筛选及应用[D].青岛:中国海洋大学,2007. [49] 王师.栉孔扇贝遗传图谱的构建及重复元件的进化分析[D].青岛:中国海洋大学,2007. [50] 刘卫东,鲍相渤,宋文涛,等.虾夷扇贝遗传连锁图谱的初步构建[J].遗传,2009,31(6):629-637. [51] HEDGECOCK D, LI G, HUBERT S, et al. Widespread null alleles and poor cross-species amplification of microsatellite DNA loci cloned from the Pacific oyster, Crassostrea gigas[J]. Journal of Shellfish Research,2004,23(2):379-385. [52] CHARLESWORTH B, CHARLESWORTH D. The genetic basis of inbreeding depression[J]. Genetical Research,1999,74(3):329-340. [53] MANJAPPA G, UDAY G, HITTALMANI S, et al. Marker assisted selection and segregation distortion studies in rice (Oryza sativa)[J]. The Indian Journal of Agricultural Sciences,2022,92(7):853-856. [54] FU Q, MENG X H, LUAN S, et al. Segregation distortion:high genetic load suggested by a Chinese shrimp family under high-intensity selection[J]. Scientific Reports,2020,10(1):1-11. [55] COULTON A, PRZEWIESLIK-ALLEN A M, BURRIDGE A J, et al. Segregation distortion:utilizing simulated genotyping data to evaluate statistical methods[J]. PLoS One,2020,15(2):e0228951.