Effects of Water Temperature on Distribution and Type of Skin Mucus Cells and Mucus Immune Factors of Mandarinfish Siniperca chuatsi
SHI Yusong, ZHAO Jinliang
Key Laboratory of Freshwater Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Shanghai Collaborative Innovation Center, Aquatic Animal Genetics and Breeding Center, National Experimental Teaching Demonstration Center for Fishery Science, Shanghai Ocean University, Shanghai 201306, China
Abstract:In order to understand the effects of different temperatures on the surface mucus cell types and mucus immune factors of mandarinfish Siniperca chuatsi, the mandarinfish with body weight of (19.0±3.2) g and body length of (11.0±1.5) cm was placed in an aquarium with water temperature of 10, 20 and 30 ℃, and at 0, 36 and 72 h, the excess water on the body surface of the mandarin was gently wiped off with absorbent paper, the mucus on the trunk and tail was gently scraped with a glass slide, and the skins of head, trunk and caudal peduncle was immediately cut off from the mandarinfish anaesthetized with 1% MS-222 on ice, and fixed in Bonn′s fluid to observe the effects of three temperatures on the distribution and types of body surface mucus cells at 72 h after the experiment by AB-PAS staining method. The staining results showed that there were four types of mucus cells on the skin surface of mandarinfish. The maximal number of mucus cells per unit area was observed in skin of the head, followed by the trunk and the caudal peduncle. The type Ⅱ was found to be increased the most in 20 ℃ and 30 ℃ groups, followed by type Ⅳ compared with 10 ℃ group, type Ⅰ showing slightly decreasing trend, and type Ⅲ showing irregular change. qRT-PCR and double-antibody sandwich enzyme-linked immunoassay revealed that the expression levels of IgM gene and Hepcidin gene were up-regulated with increasing temperature. The expression levels of IL-1β gene were significantly up-regulated in the 20 ℃ group and down-regulated in the 30 ℃ group compared with the 10 ℃ group. There was significantly higher SOD activity in 30 ℃ group than that in 10 ℃ and 20 ℃ groups, while the ACP and LYS activities were slightly higher than those in 10 ℃ and 20 ℃ groups. The findings indicate that the skin mucus cell types and number and immune-related factors of mandarinfish are significantly affected by ambient temperature.
施郁松, 赵金良. 温度对鳜体表黏液细胞及黏液免疫因子的影响[J]. 水产科学, 2024, 43(1): 32-40.
SHI Yusong, ZHAO Jinliang. Effects of Water Temperature on Distribution and Type of Skin Mucus Cells and Mucus Immune Factors of Mandarinfish Siniperca chuatsi. 水产科学, 2024, 43(1): 32-40.
[1] 李艳菲,狄桂兰,王宁,等.鱼类黏液细胞研究进展[J].水产科学,2020,39(1):143-150. [2] 罗晓春,谢明权,黄玮,等.鱼类粘膜免疫研究进展[J].水产学报,2005,29(3):411-416. [3] 宋光泉,陈清泉,胡良成,等.泥鳅和大鳞副泥鳅体表粘液特性的研究初报[J].水生生物学报,1990,14(3):283-285. [4] 孙永旭,董宏标,王文豪,等.温度对大口黑鲈幼鱼不同组织抗氧化能力及免疫相关蛋白表达的影响[J].生态科学,2019,38(3):18-25. [5] 张新宇.温度对鱼类生存能力的影响[J].农业科学,2020(3):217-218. [6] LE MORVAN C,TROUTAUD D,DESCHAUX P.Differential effects of temperature on specific and nonspecific immune defences in fish[J].Journal of Experimental Biology,1998,201(2):165-168. [7] CUSHING J E Jr.An effect of temperature upon antibody-production in fish[J].The Journal of Immunology,1942,45(2):123-126. [8] 刘家寿,崔奕波,刘建康.鳜和乌鳢最适温度的研究[J].水生生物学报,2002,26(5):433-437. [9] 胡振禧,黄洪贵,吴妹英,等.温度对斑鳜胚胎发育的影响[J].淡水渔业,2014,44(3):104-107. [10] 张晓华,苏锦祥,殷名称.不同温度条件对鳜仔鱼摄食和生长发育的影响[J].水产学报,1999,23(1):91-94. [11] 罗霞,潘厚军,巩华,等.温度对鳜皮肤黏膜抗体产生的影响[J].广东海洋大学学报,2007,27(3):45-49. [12] 张芳,周姝,韩喜东.鳜鱼的病害防控技术[J].渔业致富指南,2019(3):55-58. [13] 黄志斌,吴淑勤,石存斌,等.珠江三角洲地区鳜鱼病害现状及综合防治对策[J].淡水渔业,1999,29(7):12-14. [14] 赖子尼,吴淑勤,石存斌,等.降温降水对池塘水环境影响及诱发鳜鱼疾病的研究[J].湛江海洋大学学报,1999,19(3):9-14. [15] 任朝颖,贺蝶,李杨,等.一例翘嘴鳜夏花斜管虫病的诊治[J].科学养鱼,2021(11):55-56. [16] 范毛毛,常藕琴,石存斌,等.鳜黏膜淋巴组织结构的初步研究[J].中国水产科学,2009,16(3):420-426. [17] 罗霞,潘厚军,巩华,等.鳜皮肤黏液IgM样蛋白的纯化[J].水产学报,2007,31(6):726-730. [18] 张婷,史晋绒,宋柯,等.鱼类体表粘液分泌机制·组分与功能研究进展[J].安徽农业科学,2014,42(22):7445-7448. [19] 罗霞,潘厚军,巩华,等.鳜浸泡嗜水气单胞菌全菌疫苗后皮肤黏液抗体的变化[J].中国水产科学,2007,14(5):823-828. [20] 曾祥琮.长江水系渔业资源:全国渔业资源调查和区划专集[M].北京:海洋出版社,1990:56. [21] JONES R,REID L. The effect of pH on Alcian blue staining of epithelial acid glycoproteins.I.Sialomucins and sulphomucins (singly or in simple combinations)[J]. The Histochemical Journal,1973,5(1):9-18. [22] 尹苗,安利国,杨桂文,等.鲤鱼粘液细胞类型的研究[J].动物学杂志,2000,35(1):8-9. [23] SINHA G M. A histochemical study of the mucous cells in the bucco-pharyngeal region of four Indian freshwater fishes in relation to their origin, development, occurrence and probable functions[J].Acta Histochemica,1975,53(2):217-223. [24] 安利国,孟广勋,杨桂文,等.鲤稚幼体早期发育过程中粘液细胞的发生和变化[J].水生生物学报,2001,25(2):191-194. [25] OTTESEN O H, OLAFSEN J A. Ontogenetic development and composition of the mucous cells and the occurrence of saccular cells in the epidermis of Atlantic halibut[J]. Journal of Fish Biology,1997,50(3):620-633. [26] 陈楚,孙嘉,李滢钰,等.三种底栖淡水鱼类皮肤黏液细胞分布与数量比较[J].动物学杂志,2018,53(6):931-937. [27] 李文龙,梁兴明,梁萌青,等.温度对大菱鲆幼鱼生长及免疫相关酶活性的影响[J].水产科学,2017,36(3):311-316. [28] 陈昌福,罗宇良,蔡冰,等.饲养水温对草鱼溶菌酶活性的影响[J].中国水产科学,1996,3(3):24-30. [29] 林桂芳,鄢庆枇,陈文博,等.间接ELISA法研究嗜水气单胞菌对鳗鲡表皮黏液的黏附特性[J].中国水产科学,2013,20(5):1023-1031. [30] YAN Q P, CHEN Q, MA S, et al. Characteristics of adherence of pathogenic Vibrio alginolyticus to the intestinal mucus of large yellow croaker (Pseudosciaena crocea)[J]. Aquaculture,2007,269(1/2/3/4):21-30. [31] PALACE V P, KLAVERKAMP J F. Variation of hepatic enzymes in three species of freshwater fish from Precambrian Shield lakes and the effect of cadmium exposure[J]. Comparative Biochemistry and Physiology Part C:Comparative Pharmacology,1993,104(1):147-154. [32] PARIHAR M S, JAVERI T, HEMNANI T, et al. Responses of superoxide dismutase,glutathione peroxidase and reduced glutathione antioxidant defenses in gills of the freshwater catfish (Heteropneustes fossilis) to short-term elevated temperature[J]. Journal of Thermal Biology,1997,22(2):151-156. [33] MARTÍNEZ-ÁLVAREZ R M, MORALES A E, SANZ A. Antioxidant defenses in fish:biotic and abiotic factors[J]. Reviews in Fish Biology and Fisheries,2005,15(1):75-88. [34] 陆健,张佳佳,王佩佩,等.急性温度胁迫对大口黑鲈存活率及肝脏生化指标的影响[J].淡水渔业,2020,50(2):87-93. [35] 许国蓉.温度对红螯光壳螯虾生长及免疫影响的初步研究[D].上海:华东师范大学,2017. [36] 陈家长,臧学磊,瞿建宏,等.温度胁迫下罗非鱼(GIFT Oreochromis niloticus)机体免疫力的变化及其对海豚链球菌易感性的影响[J].农业环境科学学报,2011,30(9):1896-1901. [37] SHIKE H, LAUTH X, WESTERMAN M E, et al. Bass hepcidin is a novel antimicrobial peptide induced by bacterial challenge[J]. European Journal of Biochemistry,2002,269(8):2232-2237. [38] 闫兵兵,姜娜,罗琳,等.维氏气单胞菌菌蜕疫苗免疫后鲤免疫应答与hepcidin基因表达特征[J].微生物学通报,2017,44(6):1395-1404. [39] 王慧,杨文佳,骆建林,等.大鲵抗菌肽基因KK1/KK5/KK8对嗜水气单胞菌的侵染响应[J].南方农业学报,2018,49(8):1627-1632. [40] GONZALEZ S F, BUCHMANN K, NIELSEN M E. Real-time gene expression analysis in carp (Cyprinus carpio L.) skin:inflammatory responses caused by the ectoparasite Ichthyophthirius multifiliis[J]. Fish & Shellfish Immunology,2007,22(6):641-650. [41] CHEN S L, LI W, MENG L, et al. Molecular cloning and expression analysis of a hepcidin antimicrobial peptide gene from turbot (Scophthalmus maximus)[J]. Fish & Shellfish Immunology,2007,22(3):172-181. [42] 黄智慧,马爱军.大菱鲆体表粘液细胞组化研究及高温胁迫对其类型和分布的影响[J].水产学报,2010,34(5):719-725. [43] 叶菊风,罗炳德.高温及内毒素复合因素对IL-1βmRNA表达影响[J].中国公共卫生,2010,26(2):214-215. [44] DOOLEY H, FLAJNIK M F. Antibody repertoire development in cartilaginous fish[J]. Developmental & Comparative Immunology,2006,30(1/2):43-56. [45] AINSWORTH A J, DEXIANG C, WATERSTRAT P R, et al. Effect of temperature on the immune system of channel catfish (Ictalurus punctatus)—I.Leucocyte distribution and phagocyte function in the anterior kidney at 10 ℃[J]. Comparative Biochemistry and Physiology Part A:Physiology,1991,100(4):907-912. [46] NYBELIN O. The influence of temperature on the formation of agglutinins in fish[J]. Bulletin-Office International Des Epizooties,1968,69(9):1353-1355. [47] SCHNEIDER B, AMBROSIUS H. The influence of environmental temperature on the lymphocyte populations in carp (Cyprinus carpio L.)[J]. Biomedica Biochimica Acta,1987,46(1):135-141. [48] 管敏,张德志,王龙,等.子二代中华鲟对急性低温胁迫的生理响应[J].水产科学,2019,38(4):458-464.