|
|
耳石微化学技术在鱼类生境履历重建中的研究进展 |
高春霞1,2,3,4,5, 黄慧娴1, 赵静1, 马金1,2,3,5, 李建华1,2,3 |
1.上海海洋大学 海洋科学学院,上海 201306; 2.国家远洋渔业工程技术研究中心,上海 201306; 3.大洋渔业资源可持续开发教育部重点实验室,上海 201306; 4.农业农村部大洋渔业资源环境科学观测实验站,上海 201306; 5.长江口水生生物资源监测与保护联合实验室,上海 201306 |
|
Research Advances on Reconstruction of Habitat History for Fish Inferred from Otolith Microchemistry |
GAO Chunxia1,2,3,4,5, HUANG Huixian1, ZHAO Jing1, MA Jin1,2,3,5, LI Jianhua1,2,3 |
1. College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; 2. National Engineering Research Center for Oceanic Fisheries, Shanghai 201306, China; 3. The Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Shanghai 201306, China; 4. Scientific Observing and Experimental Station of Oceanic Fishery Resources, Ministry of Agriculture and Rural Affairs, Shanghai 201306, China; 5. Joint Laboratory for Monitoring and Conservation of Aquatic Living Resources in the Yangtze Estuary, Shanghai 201306, China |
引用本文: |
高春霞, 黄慧娴, 赵静, 马金, 李建华. 耳石微化学技术在鱼类生境履历重建中的研究进展[J]. 水产科学, 2024, 43(1): 163-172.
GAO Chunxia, HUANG Huixian, ZHAO Jing, MA Jin, LI Jianhua. Research Advances on Reconstruction of Habitat History for Fish Inferred from Otolith Microchemistry. Fisheries Science, 2024, 43(1): 163-172.
|
|
|
|
链接本文: |
http://www.shchkx.com/CN/10.16378/j.cnki.1003-1111.22011 或 http://www.shchkx.com/CN/Y2024/V43/I1/163 |
[1] 徐兆礼,陈佳杰.东、黄渤海带鱼的洄游路线[J].水产学报,2015,39(6):824-835. [2] 陈佳杰,徐兆礼.东、黄海大黄鱼种群划分与地理隔离分析[J].中国水产科学,2012,19(2):310-320. [3] 徐兆礼,陈佳杰.小黄鱼洄游路线分析[J].中国水产科学,2009,16(6):931-940. [4] 孙璐.许氏平鲉与刺参生物遥测技术的构建与应用[D].青岛:中国科学院研究生院(海洋研究所),2013. [5] 陈锦辉,庄平,吴建辉,等.应用弹式卫星数据回收标志技术研究放流中华鲟幼鱼在海洋中的迁移与分布[J].中国水产科学,2011,18(2):437-442. [6] 洪波,孙振中.标志放流技术在渔业中的应用现状及发展前景[J].水产科技情报,2006,33(2):73-76. [7] 王正鲲,赵天,林小涛,等.茜素络合物对唐鱼耳石标记效果以及生长和存活率的影响[J].生态学杂志,2015,34(1):189-194. [8] 耿倩,张淑荣,段妍,等.荧光标记技术在增殖放流中的应用现状[J].水产科学,2016,35(3):308-312. [9] 刘引兰,吴志强,胡茂林.我国刀鲚研究进展[J].水产科学,2008,27(4):205-209. [10] 李文祥,王桂堂.洄游型、淡水型和陆封型刀鲚的寄生蠕虫群落结构[J].动物学杂志,2014,49(2):233-243. [11] 解涵,金广海,解玉浩,等.依耳石显微结构判断安氏新银鱼的早期生活史[J].水产科学,2010,29(1):35-39. [12] DEVEREUX I. Temperature measurements from oxygen isotope ratios of fish otoliths[J]. Science,1967,155(3770):1684-1685. [13] RADTKE R L. Strontium-calcium concentration ratios in fish otoliths as environmental indicators[J]. Comparative Biochemistry and Physiology Part A:Physiology,1989,92(2):189-193. [14] 熊瑛,刘洪波,汤建华,等.耳石微化学在海洋鱼类洄游类型和种群识别研究中的应用[J].生命科学,2015,27(7):953-959. [15] 朱国平.金枪鱼类耳石微化学研究进展[J].应用生态学报,2011,22(8):2211-2218. [16] 窦硕增.鱼类的耳石信息分析及生活史重建——理论、方法与应用[J].海洋科学集刊,2007(1):93-113. [17] CAMPANA S E. Chemistry and composition of fish otoliths:pathways,mechanisms and applications[J]. Marine Ecology Progress Series,1999,188:263-297. [18] CHENZ X, JONES C M. Simultaneous determination of 33 major, minor, and trace elements in juvenile and larval fish otoliths by high resolution double focusing sector field inductively coupled plasma mass spectrometry[C]//Winter Conference on Plasma Spectrochemistry. Arizona, 2006: 8-14. [19] STURROCK A M, TRUEMAN C N, DARNAUDE A M, et al. Can otolith elemental chemistry retrospectively track migrations in fully marine fishes?[J]. Journal of Fish Biology,2012,81(2):766-795. [20] PAYAN P, DE PONTUAL H, BŒUF G, et al. Endolymph chemistry and otolith growth in fish[J]. Comptes Rendus Palevol,2004,3(6/7):535-547. [21] 许友卿,王宏雷,刘永强,等.海洋酸化对水生动物骨骼和耳石钙化、生长发育的影响与机理[J].水产科学,2016,35(6):741-746. [22] WEIDMAN C R, MILLNER R. High-resolution stable isotope records from North Atlantic cod[J]. Fisheries Research,2000,46(1/2/3):327-342. [23] 尉晓英,朱国平.南极鱼类耳石微化学研究进展[J].生态学杂志,2020,39(10):3471-3481. [24] WALTHER B D, THORROLD S R. Water, not food, contributes the majority of strontium and Barium deposited in the otoliths of a marine fish[J]. Marine Ecology Progress Series,2006,311:125-130. [25] 刘洪波,姜涛,轩中亚,等.日本有明海及周边水域刀鲚耳石微化学研究[J].水产科学,2020,39(4):500-508. [26] SECOR D H, HENDERSON-ARZAPALO A, PICCOLI P M. Can otolith microchemistry chart patterns of migration and habitat utilization in anadromous fishes?[J]. Journal of Experimental Marine Biology and Ecology,1995,192(1):15-33. [27] TZENG W N. Effects of salinity and ontogenetic movements on strontium:calcium ratios in the otoliths of the Japanese eel, Anguilla japonica Temminck and Schlegel[J]. Journal of Experimental Marine Biology and Ecology,1996,199(1):111-122. [28] YANG J, JIANG T, LIU H B. Are there habitat salinity markers of the Sr:Ca ratio in the otolith of wild diadromous fishes?A literature survey[J]. Ichthyological Research,2011,58(3):291-294. [29] DAROS F A, SPACH H L, CORREIA A T. Habitat residency and movement patterns of Centropomus parallelus juveniles in a subtropical estuarine complex[J]. Journal of Fish Biology,2016,88(5):1796-1810. [30] GONZALVO S, KAWAKAMI T, TANOUE H, et al. Estuarine dependency of Lates japonicus in Shimanto Estuary, Japan, inferred from otolith Sr∶Ca[J]. Estuarine, Coastal and Shelf Science,2021,252:107269. [31] TIAN H L, LIU J H, CAO L, et al. Temperature and salinity effects on strontium and Barium incorporation into otoliths of flounder Paralichthys olivaceus at early life stages[J]. Fisheries Research,2021,239:105942. [32] WEBB S D, WOODCOCK S H, GILLANDERS B M. Sources of otolith Barium and strontium in estuarine fish and the influence of salinity and temperature[J]. Marine Ecology Progress Series,2012,453:189-199. [33] ELSDON T S, GILLANDERS B M. Interactive effects of temperature and salinity on otolith chemistry:challenges for determining environmental histories of fish[J]. Canadian Journal of Fisheries and Aquatic Sciences,2002,59(11):1796-1808. [34] MILLER J A, KENT A J R. The determination of maternal Run time in juvenile Chinook salmon (Oncorhynchus tshawytscha) based on Sr/Ca and 87Sr/86Sr within otolith cores[J]. Fisheries Research,2009,95(2/3):373-378. [35] STURROCK A M, HUNTER E, MILTON J A, et al. Quantifying physiological influences on otolith microchemistry[J]. Methods in Ecology and Evolution,2015,6(7):806-816. [36] MILLER J A. Effects of water temperature and Barium concentration on otolith composition along a salinity gradient:implications for migratory reconstructions[J]. Journal of Experimental Marine Biology and Ecology,2011,405(1/2):42-52. [37] THOMAS O R B, GANIO K, ROBERTS B R, et al. Trace element-protein interactions in endolymph from the inner ear of fish:implications for environmental reconstructions using fish otolith chemistry[J]. Metallomics,2016,9(3):239-249. [38] ELSDON T S, GILLANDERS B M. Alternative life-history patterns of estuarine fish:Barium in otoliths elucidates freshwater residency[J]. Canadian Journal of Fisheries and Aquatic Sciences,2005,62(5):1143-1152. [39] TURNER D R, WHITFIELD M, DICKSON A G. The equilibrium speciation of dissolved components in freshwater and sea water at 25 ℃ and 1 atm pressure[J]. Geochimica et Cosmochimica Acta,1981,45(6):855-881. [40] 潘新冬,张弛,叶振江,等.黄海南部蓝点马鲛耳石微量元素[J].水产学报,2019,43(4):907-916. [41] HAMER P A, JENKINS G P, COUTIN P. Barium variation in Pagrus auratus (Sparidae) otoliths:a potential indicator of migration between an embayment and ocean waters in south-eastern Australia[J]. Estuarine, Coastal and Shelf Science,2006,68(3/4):686-702. [42] GAULDIE R W. A measure of metabolism in fish otoliths[J]. Comparative Biochemistry and Physiology Part A:Physiology,1990,97(4):475-480. [43] HICKS A S, CLOSS G P, SWEARER S E. Otolith microchemistry of two amphidromous galaxiids across an experimental salinity gradient:a multi-element approach for tracking diadromous migrations[J]. Journal of Experimental Marine Biology and Ecology,2010,394(1/2):86-97. [44] NELSON T R, POWERS S P. Elemental concentrations of water and otoliths as salinity proxies in a northern gulf of Mexico estuary[J]. Estuaries and Coasts,2020,43(4):843-864. [45] WELLS B K, RIEMAN B E, CLAYTON J L, et al. Relationships between water, otolith, and scale chemistries of westslope cutthroat trout from the coeur d′Alene river, Idaho:the potential application of hard-part chemistry to describe movements in freshwater[J]. Transactions of the American Fisheries Society,2003,132(3):409-424. [46] MARTIN G B, THORROLD S R. Temperature and salinity effects on magnesium, Manganese, and Barium incorporation in otoliths of larval and early juvenile spot Leiostomus xanthurus[J]. Marine Ecology Progress Series,2005,293:223-232. [47] MARTIN G B, WUENSCHEL M J. Effect of temperature and salinity on otolith element incorporation in juvenile gray snapper Lutjanus griseus[J]. Marine Ecology Progress Series,2006,324:229-239. [48] HUH Y, CHAN L H, ZHANG L B, et al. Lithium and its isotopes in major world rivers:implications for weathering and the oceanic budget[J]. Geochimica et Cosmochimica Acta,1998,62(12):2039-2051. [49] TROUWBORST R E, CLEMENT B G, TEBO B M, et al. Soluble Mn(III) in suboxic zones[J]. Science,2006,313(5795):1955-1957. [50] WALTHER B D, THORROLD S R. Continental-scale variation in otolith geochemistry of juvenile American shad (Alosa sapidissima)[J]. Canadian Journal of Fisheries and Aquatic Sciences,2008,65(12):2623-2635. [51] MOHAN J A, RULIFSON R A, CORBETT D R, et al. Validation of oligohaline elemental otolith signatures of striped bass by use of in situ caging experiments and water chemistry[J]. Marine and Coastal Fisheries,2012,4(1):57-70. [52] LIMBURG K E, OLSON C, WALTHER Y, et al. Tracking Baltic hypoxia and cod migration over millennia with natural tags[J]. Proceedings of the National Academy of Sciences of the United States of America,2011,108(22):E177-E182. [53] LIMBURG K E, WALTHER B D, LU Z L, et al. In search of the dead zone:use of otoliths for tracking fish exposure to hypoxia[J]. Journal of Marine Systems,2015,141:167-178. [54] KALISH J M. Oxygen and carbon stable isotopes in the otoliths of wild and laboratory-reared Australian salmon (Arripis trutta)[J]. Marine Biology,1991,110(1):37-47. [55] THORROLD S R, CAMPANA S E, JONES C M, et al. Factors determining δ13C and δ18O fractionation in aragonitic otoliths of marine fish[J]. Geochimica et Cosmochimica Acta,1997,61(14):2909-2919. [56] GAO Y W, SVEC R A, JONER S H, et al. The life history and stock structure of groundfish from stable isotopic analysis of otoliths[J]. Geochmica et Cosmochimica Acta, 2005, 15(2): 165-174. [57] WEIDEL B C, USHIKUBO T, CARPENTER S R, et al. Diary of a bluegill (Lepomis macrochirus):daily δ13C and δ18O records in otoliths by ion microprobe[J]. Canadian Journal of Fisheries and Aquatic Sciences,2007,64(12):1641-1645. [58] GODIKSEN J A, SVENNING M A, DEMPSON J B, et al. Development of a species-specific fractionation equation for Arctic charr (Salvelinus alpinus (L. )) :an experimental approach[J]. Hydrobiologia,2010,650(1):67-77. [59] 郑永飞,陈江峰.稳定同位素地球化学[M].北京:科学出版社,2000. [60] PATTERSON W P, SMITH G R, LOHMANN K C. Continental paleothermometry and seasonality using the isotopic composition of aragonitic otoliths of freshwater fishes[M]//Climate Change in Continental Isotopic Records. Washington, D. C. :American Geophysical Union,2013:191-202. [61] RADTKE R L, LENZ P, SHOWERS W, et al. Environmental information stored in otoliths:insights from stable isotopes[J]. Marine Biology,1996,127(1):161-170. [62] GAO Y W. Regime shift signatures from stable oxygen isotopic records of otoliths of Atlantic cod (Gadus morhua)[J]. Isotopes in Environmental and Health Studies,2002,38(4):251-263. [63] GUIGUER K R R A, DRIMMIE R, POWER M. Validating methods for measuring, δ18O and δ13C in otoliths from freshwater fish[J]. Rapid Communications in Mass Spectrometry,2003,17(5):463-471. [64] HØIE H, OTTERLEI E, FOLKVORD A. Temperature-dependent fractionation of stable oxygen isotopes in otoliths of juvenile cod (Gadus morhua L. )[J]. ICES Journal of Marine Science,2004,61(2):243-251. [65] JONES J B, CAMPANA S E. Stable oxygen isotope reconstruction of ambient temperature during the collapse of a cod (Gadus morhua) fishery[J]. Ecological Applications:a Publication of the Ecological Society of America,2009,19(6):1500-1514. [66] STORM-SUKE A, DEMPSON J B, REIST J D, et al. A field-derived oxygen isotope fractionation equation for Salvelinus species[J]. Rapid Communications in Mass Spectrometry:RCM,2007,21(24):4109-4116. [67] DORVAL E, PINER K, ROBERTSON L, et al. Temperature record in the oxygen stable isotopes of Pacific sardine otoliths:experimental vs. wild stocks from the Southern California Bight[J]. Journal of Experimental Marine Biology and Ecology,2011,397(2):136-143. [68] GEFFEN A J. Otolith oxygen and carbon stable isotopes in wild and laboratory-reared plaice (Pleuronectes platessa)[J]. Environmental Biology of Fishes,2012,95(4):419-430. [69] MINKE-MARTIN V, BRIAN DEMPSON J, SHEEHAN T F, et al. Otolith-derived estimates of marine temperature use by West Greenland Atlantic salmon (Salmo salar)[J]. ICES Journal of Marine Science,2015,72(7):2139-2148. [70] KASTELLE C R, HELSER T E, MCKAY J L, et al. Age validation of Pacific cod (Gadus macrocephalus) using high-resolution stable oxygen isotope (δ18O) chronologies in otoliths[J]. Fisheries Research,2017,185:43-53. [71] SAKAMOTO T, KOMATSU K, YONEDA M, et al. Temperature dependence of δ18O in otolith of juvenile Japanese sardine:laboratory rearing experiment with micro-scale analysis[J]. Fisheries Research,2017,194:55-59. [72] TORNIAINEN J, LENSU A, VUORINEN P J, et al. Oxygen and carbon isoscapes for the Baltic Sea:testing their applicability in fish migration studies[J]. Ecology and Evolution,2017,7(7):2255-2267. [73] NEVILLE V, ROSE G, ROWE S, et al. Otolith chemistry and redistributions of Northern cod:evidence of Smith Sound-Bonavista Corridor connectivity[J]. Canadian Journal of Fisheries and Aquatic Sciences,2018,75(12):2302-2312. [74] SHIRAI K, OTAKE T, AMANO Y, et al. Temperature and depth distribution of Japanese eel eggs estimated using otolith oxygen stable isotopes[J]. Geochimica et Cosmochimica Acta,2018,236:373-383. [75] WILLMES M, LEWIS L S, DAVIS B E, et al. Calibrating temperature reconstructions from fish otolith oxygen isotope analysis for California′s critically endangered Delta Smelt[J]. Rapid Communications in Mass Spectrometry:RCM,2019,33(14):1207-1220. [76] MORISSETTE O, BERNATCHEZ L, WIEDENBECK M, et al. Deciphering lifelong thermal niche using otolith δ18O thermometry within supplemented lake trout (Salvelinus namaycush) populations[J]. Freshwater Biology,2020,65(6):1114-1127. [77] 何勇凤,吴兴兵,王旭歌,等.四川裂腹鱼耳石碳、氧稳定同位素特征[J].应用生态学报,2017,28(7):2339-2343. [78] SCHWARCZ H P, GAO Y, CAMPANA S, et al. Stable carbon isotope variations in otoliths of Atlantic cod (Gadus morhua)[J]. Canadian Journal of Fisheries and Aquatic Sciences,1998,55(8):1798-1806. [79] CHUNG M T, TRUEMAN C N, GODIKSEN J A, et al. Otolith δ13C values as a metabolic proxy:approaches and mechanical underpinnings[J]. Marine and Freshwater Research,2019,70(12):1747-1756. [80] GROSSMAN E L, KU T L. Oxygen and carbon isotope fractionation in biogenic aragonite:temperature effects[J]. Chemical Geology:Isotope Geoscience Section,1986,59:59-74. [81] WURSTER C M, PATTERSON W P. Metabolic rate of late Holocene freshwater fish:evidence from δ13C values of otoliths[J]. Paleobiology,2003,29(4):492-505. [82] GAO Y W, JONER S H, BARGMANN G G. Stable isotopic composition of otoliths in identification of spawning stocks of Pacific herring (Clupea pallasi) in Puget Sound[J]. Canadian Journal of Fisheries and Aquatic Sciences,2001,58(11):2113-2120. [83] GAO Y W, DETTMAN D L, PINER K R, et al. Isotopic correlation (δ18O versus δ13C) of otoliths in identification of groundfish stocks[J]. Transactions of the American Fisheries Society,2010,139(2):491-501. [84] 姜涛,刘洪波,杨健.长江口刀鲚幼鱼耳石碳、氧同位素特征初报[J].海洋科学,2015,39(6):48-53. [85] 王玉堃.耳石微细结构和微化学示踪技术在鱼类种群生态学研究中的应用[D].青岛:中国海洋大学,2015. [86] BACON C R, WEBER P K, LARSEN K A, et al. Migration and rearing histories of Chinook salmon (Oncorhynchus tshawytscha) determined by ion microprobe Sr isotope and Sr/Ca transects of otoliths[J]. Canadian Journal of Fisheries and Aquatic Sciences,2004,61(12):2425-2439. [87] PALMER M R, EDMOND J M. The strontium isotope budget of the modern ocean[J]. Earth and Planetary Science Letters,1989,92(1):11-26. [88] KENNEDY B P, KLAUE A, BLUM J D, et al. Reconstructing the lives of fish using Sr isotopes in otoliths[J]. Canadian Journal of Fisheries and Aquatic Sciences,2002,59(6):925-929. [89] DUPONCHELLE F, POUILLY M, PÉCHEYRAN C, et al. Trans-Amazonian natal homing in giant catfish[J]. Journal of Applied Ecology,2016,53(5):1511-1520. [90] GILLANDERS B M, SANCHEZ-JEREZ P, BAYLE-SEMPERE J, et al. Trace elements in otoliths of the two-banded bream from a coastal region in the south-west Mediterranean:are there differences among locations?[J]. Journal of Fish Biology,2001,59(2):350-363. [91] 林世寰. 利用耳石元素组成和标识放流实验研究日本鳗在河川内的洄游环境史及栖地利用特征[D].台北: 台湾大学渔业科学研究所, 2012. [92] 轩中亚,姜涛,刘洪波,等.基于耳石微化学分析的鱼类种群生态学研究进展[J].渔业科学进展,2022,43(1):1-14. [93] 姜涛.基于耳石形态和微化学特征的我国鲚属鱼类洄游生态学研究[D].南京:南京农业大学,2014. [94] 李孟孟,姜涛,陈婷婷,等.长江安庆江段刀鲚耳石微化学及洄游生态学意义[J].生态学报,2017,37(8):2788-2795. [95] 郭弘艺,张亚,唐文乔,等.日本鳗鲡幼体的耳石微化学分析及其环境指示元素筛选[J].水产学报,2015,39(10):1467-1478. |
[1] |
杨祖长, 胡望娇, 冯广朋, 张辉, 郑跃平, 季强. 基于浸泡法的淞江鲈耳石锶标记技术研究[J]. 水产科学, 2025, 44(1): 108-114. |
[2] |
康绪明, 赵艳芳, 谭志军, 翟毓秀, 丁海燕, 盛晓风. 稳定同位素技术在贝类产地溯源中的研究进展[J]. 水产科学, 2022, 41(6): 1064-1071. |
[3] |
徐聚臣,段友健,骆小年,蔡忠璐,何宇,刘旋,刘嘉诚,韩牧轩,孙立孝. 达里湖瓦氏雅罗鱼耳石质量与年龄关系[J]. 水产科学, 2021, 40(2): 279-284. |
[4] |
刘洪波, 姜涛, 轩中亚, 邱晨, 杨健. 日本有明海及周边水域刀鲚耳石微化学研究[J]. 水产科学, 2020, 39(4): 500-508. |
[5] |
王摆,田甲申,董颖,陈仲,周遵春,宋钢,张淑丽. 应用稳定同位素分析辽东湾池塘仿刺参的食性[J]. 水产科学, 2019, 38(2): 236-240. |
[6] |
王震,田甲申,李多慧,韩羽嘉,鹿志创,傅志宇,木云雷. 海湾扇贝碳氮稳定同位素的分馏系数和转化率研究[J]. 水产科学, 2018, 37(2): 145-151. |
[7] |
田甲申,李多慧,王摆,刘一兵,周遵春. 工厂化养殖大菱鲆饵料贡献率研究及营养评价[J]. 水产科学, 2018, 37(1): 8-14. |
[8] |
田甲申,李多慧,王摆,鹿志创,乔壮,韩家波. 虾夷扇贝种贝促熟期饵料贡献率研究[J]. 水产科学, 2017, 36(6): 722-727. |
[9] |
王摆,田甲申,曹琛,李多慧,郝咏芳,张乾,周遵春,张淑丽,董颖. 稳定同位素法研究大竹蛏D形幼虫、稚贝和幼贝的食性[J]. 水产科学, 2017, 36(5): 670-673. |
[10] |
李宗栋,沈建忠,李霄,吉芬芬,潘静,李乾. 滇池红鳍原鲌4种年龄鉴定材料的比较[J]. 水产科学, 2017, 36(3): 330-335. |
[11] |
方华华,李翔,董晓煜. 傅里叶分析在江鳕矢耳石形态中的应用[J]. 水产科学, 2017, 36(3): 364-368. |
[12] |
许友卿,王宏雷,刘永强,丁兆坤. 海洋酸化对水生动物骨骼和耳石钙化、生长发育的影响与机理[J]. 水产科学, 2016, 35(6): 741-746. |
[13] |
刘保占,刘瑀,李颖,刘苓,王海霞. 不同氮磷比对海洋赤潮藻碳、氮稳定同位素组成的影响[J]. 水产科学, 2013, (9): 509-515. |
[14] |
解涵,金广海,解玉浩,刘义新,李文宽. 依耳石显微结构判断安氏新银鱼的早期生活史[J]. 水产科学, 2010, 29(1): 35-39. |
[15] |
胡笑丛. 星虫微量元素含量的测定[J]. 水产科学, 2005, 24(6): 12-14. |
|
|
|
|