|
|
低氧胁迫对鱼类影响的研究进展 |
余欣欣, 郑国栋, 陈杰, 邹曙明 |
1.上海海洋大学,农业农村部团头鲂遗传育种中心,上海 201306; 2.上海海洋大学,农业农村部淡水水产种质资源重点实验室,上海 201306; 3.上海海洋大学,水产科学国家级实验教学示范中心,上海 201306 |
|
Advances in Research on Effects of Hypoxic Stress in Fish |
YU Xinxin, ZHENG Guodong, CHEN Jie, ZOU Shuming |
1. Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; 2. Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai 201306, China; 3. National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China |
引用本文: |
余欣欣, 郑国栋, 陈杰, 邹曙明. 低氧胁迫对鱼类影响的研究进展[J]. 水产科学, 2024, 43(2): 333-340.
YU Xinxin, ZHENG Guodong, CHEN Jie, ZOU Shuming. Advances in Research on Effects of Hypoxic Stress in Fish. 水产科学, 2024, 43(2): 333-340.
|
|
|
|
链接本文: |
http://www.shchkx.com/CN/10.16378/j.cnki.1003-1111.21206 或 http://www.shchkx.com/CN/Y2024/V43/I2/333 |
[1] 李岩强.布氏鲳鲹低氧胁迫转录组分析及VEGFA基因表达研究[D].海口:海南大学,2019. [2] 徐贺,陈秀梅,王桂芹,等.低氧胁迫在水产养殖中的研究进展[J].饲料工业,2016,37(2):33-37. [3] ZHU C D, WANG Z H, YAN B. Strategies for hypoxia adaptation in fish species:a review[J]. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology,2013,183(8):1005-1013. [4] 王武.鱼类增养殖学[M].北京:中国农业出版社,2000:54-60. [5] 李玉虎.凡纳滨对虾生长发育规律及对低氧胁迫响应的研究[D].海口:海南大学,2015. [6] BREITBURG D, LEVIN L A, OSCHLIES A, et al. Declining oxygen in the global ocean and coastal waters[J]. Science,2018,359(6371):eaam7240. [7] VAQUER-SUNYER R, DUARTE C M. Thresholds of hypoxia for marine biodiversity[J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105(40):15452-15457. [8] 阮雯,纪炜炜,郑亮,等.鱼类低氧胁迫及营养调控和应对研究进展[J].海洋渔业,2020,42(6):751-761. [9] HAN Q F, ZHAO S, ZHANG X R, et al. Distribution, combined pollution and risk assessment of antibiotics in typical marine aquaculture farms surrounding the Yellow Sea, north China[J]. Environment International,2020,138:105551. [10] 刘凯凯,唐君玮,袁廷柱,等.缺氧胁迫及对贝类免疫系统的影响[J].广西科学院学报,2020,36(2):124-130. [11] ABDEL-TAWWAB M, MONIER M N, HOSEINIFAR S H, et al. Fish response to hypoxia stress:growth, physiological, and immunological biomarkers[J]. Fish Physiology and Biochemistry,2019,45(3):997-1013. [12] RICHARDS J G. Physiological, behavioral and biochemical adaptations of intertidal fishes to hypoxia[J]. The Journal of Experimental Biology,2011,214(Pt 2):191-199. [13] POLLOCK M S, CLARKE L M J, DUBÉ M G. The effects of hypoxia on fishes:from ecological relevance to physiological effects[J]. Environmental Reviews,2007,15(NA):1-14. [14] WANNAMAKER C M, RICE J A. Effects of hypoxia on movements and behavior of selected estuarine organisms from the southeastern United States[J]. Journal of Experimental Marine Biology and Ecology,2000,249(2):145-163. [15] DHILLON R S, YAO L L, MATEY V, et al. Interspecific differences in hypoxia-induced gill remodeling in carp[J]. Physiological and Biochemical Zoology,2013,86(6):727-739. [16] BOWYER J N, BOOTH M A, QIN J G, et al. Temperature and dissolved oxygen influence growth and digestive enzyme activities of yellowtail kingfish Seriola lalandi(Valenciennes,1833)[J]. Aquaculture Research,2014,45(12):2010-2020. [17] ISRAELI D, KIMMEL E. Monitoring the behavior of hypoxia-stressed Carassius auratus using computer vision[J]. Aquacultural Engineering,1996,15(6):423-440. [18] 吴垠,张洪,赵慧慧,等.在循环养殖系统中不同溶氧量对虹鳟幼鱼代谢水平的影响[J].上海水产大学学报,2007,16(5):437-442. [19] SCHURMANN H, STEFFENSEN J. Spontaneous swimming activity of Atlantic cod Gadus morhua exposed to graded hypoxia at three temperatures[J]. Journal of Experimental Biology,1994,197(1):129-142. [20] DOMENICI P, STEFFENSEN J F, MARRAS S. The effect of hypoxia on fish schooling[J]. Philosophical Transactions of the Royal Society B:Biological Sciences,2017,372(1727):20160236. [21] DOMENICI P, FERRARI RS, STEFFENSEN J F, et al. The effect of progressive hypoxia on school structure and dynamics in Atlantic herring Clupea harengus[J]. Proceedings. Biological Sciences,2002,269(1505):2103-2111. [22] 王维政,曾泽乾,黄建盛,等.低氧胁迫对军曹鱼幼鱼生长、血清生化和非特异性免疫指标的影响[J].海洋学报,2021,43(2):49-58. [23] 石华洪,苗亮,李明云,等.水体低氧对香鱼幼鱼生长和消化酶活性的影响[J].生命科学研究,2019,23(6):469-475. [24] GAN L, LIU Y J, TIAN L X, et al. Effects of dissolved oxygen and dietary lysine levels on growth performance, feed conversion ratio and body composition of grass carp, Ctenopharyngodon idella[J]. Aquaculture Nutrition,2013,19(6):860-869. [25] BURT K, HAMOUTENE D, PÉREZ-CASANOVA J, et al. The effect of intermittent hypoxia on growth, appetite and some aspects of the immune response of Atlantic salmon (Salmo salar)[J]. Aquaculture Research,2013,45(1):124-137. [26] OBIRIKORANG K A, ACHEAMPONG J N, DUODU C P, et al. Growth, metabolism and respiration in Nile tilapia (Oreochromis niloticus) exposed to chronic or periodic hypoxia[J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology,2020,248:110768. [27] 杨凯.溶氧水平对黄颡鱼生长、代谢及氧化应激的影响[D].武汉:华中农业大学,2010. [28] MÁRIÁN T, KRASZNAI Z, BALKAY L, et al. Hypo-osmotic shock induces an osmolality-dependent permeabilization and structural changes in the membrane of carp sperm[J]. Journal of Histochemistry & Cytochemistry,1993,41(2):291-297. [29] 徐湛宁,李福贵,郑国栋,等.团头鲂耐低氧新品系雌核发育群体遗传结构的微卫星分析[J].水产学报,2017,41(3):330-338. [30] 郭志雄.低氧环境对军曹鱼幼鱼生化指标、相关基因表达的影响及其转录组学分析[D].湛江:广东海洋大学,2020. [31] 刘娟.团头鲂低氧应答相关基因的功能及其对鳃重塑的影响[D].上海:上海海洋大学,2020. [32] 钱辰颖.低氧和高氧对团头鲂F5新品系鳃组织形态变化及各组织酶活性的影响[D].上海:上海海洋大学,2020. [33] 徐湛宁.草鱼在低氧胁迫下鳃的差异蛋白质组学及热休克诱导草鱼四倍体育种研究[D].上海:上海海洋大学,2018. [34] MATEY V, RICHARDS J G, WANG Y X, et al. The effect of hypoxia on gill morphology and ionoregulatory status in the Lake Qinghai scaleless carp, Gymnocypris przewalskii[J]. Journal of Experimental Biology,2008,211(pt 7):1063-1074. [35] SOLLID J, KJERNSLI A, DE ANGELIS P M, et al. Cell proliferation and gill morphology in anoxic crucian carp[J]. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology,2005,289(4):R1196-R1201. [36] MATEY V, IFTIKAR F I, DE BOECK G, et al. Gill morphology and acute hypoxia:responses of mitochondria-rich, pavement, and mucous cells in the Amazonian oscar (Astronotus ocellatus) and the rainbow trout (Oncorhynchus mykiss), two species with very different approaches to the osmo-respiratory compromise[J]. Canadian Journal of Zoology,2011,89(4):307-324. [37] 王华.低氧对金鱼鳃形态重塑中细胞粘附的影响[D].金华:浙江师范大学,2020. [38] ONG K J, STEVENS E D, WRIGHT P A. Gill morphology of the mangrove killifish (Kryptolebias marmoratus) is plastic and changes in response to terrestrial air exposure[J]. Journal of Experimental Biology,2007,210(7):1109-1115. [39] 王燚纬.低氧、养殖密度对团头鲂生理生化指标和组织结构的影响[D].上海:上海海洋大学,2019. [40] 陈世喜,王鹏飞,区又君,等.急性和慢性低氧胁迫对卵形鲳鲹幼鱼肝组织损伤和抗氧化的影响[J].动物学杂志,2016,51(6):1049-1058. [41] 区又君,陈世喜,王鹏飞,等.低氧环境下卵形鲳鲹的氧化应激响应与生理代谢相关指标的研究[J].南方水产科学,2017,13(3):120-124. [42] 孙盛明,祝孟茹,潘方艳,等.低氧对甲壳动物的影响及其分子调控研究进展[J].水产学报,2020,44(4):690-704. [43] 常志成,温海深,张美昭,等.溶解氧水平对花鲈幼鱼氧化应激与能量利用的影响及生理机制[J].中国海洋大学学报(自然科学版),2018,48(7):20-28. [44] SIES H. Biochemistry of oxidative stress[J]. Angewandte Chemie International Edition in English,1986,25(12):1058-1071. [45] 马粒雅,王闻,迟雯丹,等.溶解氧变化对中华乌塘鳢酶活的影响及其低氧耐受力研究[J].安徽农业科学,2020,48(3):91-94. [46] 李洪娟,陈刚,郭志雄,等.军曹鱼(Rachycentron canadum)幼鱼对环境低氧胁迫氧化应激与能量利用指标的响应[J].海洋学报,2020,42(4):12-19. [47] 吴鑫杰.低氧对团头鲂细胞凋亡及抗氧化酶活性的影响[D].武汉:华中农业大学,2015. [48] 徐畅,丁炜东,曹哲明,等.急性低氧胁迫对翘嘴鳜抗氧化酶、呼吸相关酶活性及相关基因表达的影响[J].南方农业学报,2020,51(3):686-694. [49] 王晓雯,朱华,胡红霞,等.低氧胁迫对西伯利亚鲟幼鱼生理状态的影响[J].水产科学,2016,35(5):459-465. [50] 张倩,黄进强,权金强,等.急性低氧胁迫和复氧对鲫鱼氧化应激的影响[J].水产科学,2020,39(5):649-656. [51] 裴雪莹.杂交黄颡鱼“黄优1号”应对低氧胁迫的生理响应及基因表达研究[D].南京:南京师范大学,2020. [52] ROESNER A, MITZ S A, HANKELN T, et al. Globins and hypoxia adaptation in the goldfish, Carassius auratus[J]. FEBS Journal,2008,275(14):3633-3643. [53] SPEERS-ROESCH B, SANDBLOM E, LAU G Y, et al. Effects of environmental hypoxia on cardiac energy metabolism and performance in tilapia[J]. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology,2010,298(1):R104-R119. [54] 李欣茹.低氧胁迫对暗纹东方鲀能量代谢、血液指标及基因表达的影响[D].南京:南京师范大学,2018. [55] 齐明,侯懿玲,刘韬,等.急性低氧胁迫和复氧恢复对青田田鱼幼鱼氧化应激和能量代谢的影响[J].淡水渔业,2020,50(6):92-98. [56] 何伟,曹振东,付世建.温度和低氧对白鲢乳酸与糖水平的影响[J].重庆师范大学学报(自然科学版),2013,30(5):27-31. [57] CHABOT D, CLAIREAUX G. Environmental hypoxia as a metabolic constraint on fish:the case of Atlantic cod, Gadus morhua[J]. Marine Pollution Bulletin,2008,57(6/7/8/9/10/11/12):287-294. [58] 李梦晓.低氧应激对尼罗罗非鱼糖脂代谢的影响及红景天苷的调节作用研究[D].上海:华东师范大学,2018. [59] 蔡秀红,黄贻涛,张子平,等.缺氧诱导因子-1(HIF-1)及其在水生动物中的研究进展[J].农业生物技术学报,2014,22(1):119-132. [60] SHEN R J, JIANG X Y, PU J W, et al. HIF-1α and-2α genes in a hypoxia-sensitive teleost species Megalobrama amblycephala:cDNA cloning, expression and different responses to hypoxia[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2010,157(3):273-280. [61] SOLAINI G, BARACCA A, LENAZ G, et al. Hypoxia and mitochondrial oxidative metabolism[J]. Biochimica et Biophysica Acta (BBA) - Bioenergetics,2010,1797(6/7):1171-1177. [62] CHEN C, LOU T. Hypoxia inducible factors in hepatocellular carcinoma[J]. Oncotarget,2017,8(28):46691-46703. [63] LI X R, WANG T, YIN S W, et al. The improved energy metabolism and blood oxygen-carrying capacity for pufferfish, Takifugu fasciatus, against acute hypoxia under the regulation of oxygen sensors[J]. Fish Physiology and Biochemistry,2019,45(1):323-340. [64] PEI X Y, CHU M X, TANG P, et al. Effects of acute hypoxia and reoxygenation on oxygen sensors, respiratory metabolism, oxidative stress, and apoptosis in hybrid yellow catfish "Huangyou-1"[J]. Fish Physiology and Biochemistry,2021,47(5):1429-1448. [65] 张凯强,常志成,温海深,等.花鲈低氧诱导因子基因(hifs)的序列分析及低氧诱导表达[J].中国海洋大学学报(自然科学版),2020,50(1):39-47. [66] 赵永丽.花斑裸鲤低氧胁迫转录组学及其主要差异基因表达调控研究[D].西宁:青海大学,2018. [67] WU C B, ZHENG G D, ZHAO X Y, et al. Hypoxia tolerance in a selectively bred F4 population of blunt snout bream (Megalobrama amblycephala) under hypoxic stress[J]. Aquaculture,2020,518:734484. [68] 林星桦,叶明慧,SEATAN Wanida,等.多鳞鱚phds基因家族序列特征及其在低氧胁迫后表达变化[J].广东海洋大学学报,2020,40(6):1-8. [69] SEMENZA G L. Targeting HIF-1 for cancer therapy[J]. Nature Reviews. Cancer,2003,3(10):721-732. [70] GUAN W Z, GUO D D, SUN Y W, et al. Characterization of duplicated heme oxygenase-1 genes and their responses to hypoxic stress in blunt snout bream (Megalobrama amblycephala)[J]. Fish Physiology and Biochemistry,2017,43(2):641-651. [71] RIUS J, GUMA M, SCHACHTRUP C, et al. NF-κB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1α[J]. Nature,2008,453(7196):807-811. [72] TAYLOR C T, CUMMINS E P. The role of NF-κB in hypoxia-induced gene expression[J]. Annals of the New York Academy of Sciences, 2009,1177(1):178-184. [73] BARMAN H K, MOHAPATRA S D, CHAKRAPANI V, et al. Genomic organization and hypoxia inducible factor responsive regulation of teleost hsp90β gene during hypoxia stress[J]. Molecular Biology Reports,2021,48(9):6491-6501. [74] DEANE E E, WOO N Y S. Advances and perspectives on the regulation and expression of piscine heat shock proteins[J]. Reviews in Fish Biology and Fisheries,2011,21(2):153-185. [75] PRATT W B, TOFT D O. Steroid receptor interactions with heat shock protein and immunophilin chaperones[J]. Endocrine Reviews,1997,18(3):306-360. [76] CHEN B, ZHONG D B, MONTEIRO A. Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms[J]. BMC Genomics,2006,7:156. [77] PADMINI E, THARANI J. Differential expression of heat shock proteins in fish hepatocytes under hypoxic condition[J]. International Journal of Fisheries and Aquatic Studies, 2015,3(2):447-455. [78] DELANEY M A, KLESIUS P H. Hypoxic conditions induce Hsp70 production in blood, brain and head kidney of juvenile Nile Tilapia Oreochromis niloticus (L. )[J]. Aquaculture,2004,236(1/2/3/4):633-644. [79] STENSLØKKEN K O, ELLEFSEN S, LARSEN H K, et al. Expression of heat shock proteins in anoxic crucian carp (Carassius carassius):support for cold as a preparatory cue for anoxia[J]. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology,2010,298(6):R1499-R1508. |
[1] |
王小林, 吉光, 张怡晶, 王爱勇, 董婧, 刘修泽. 辽东湾鱼类群落结构的季节变化特征[J]. 水产科学, 2023, 42(6): 996-1005. |
[2] |
薛颖昊, 张明明, 徐志宇, 冯良山, 孙占祥, 贾涛, 刘东生. 水环境中微塑料的来源分布及对鱼类的生态毒性效应[J]. 水产科学, 2023, 42(6): 1081-1090. |
[3] |
颜研, 李旭东, 裴超, 孔祥会. 鱼类铁调素生物学功能与体外表达的研究进展[J]. 水产科学, 2023, 42(5): 901-910. |
[4] |
刘红艳, 熊飞, 翟东东, 王莹, 夏明, 陈元元. 鲿科鱼类DNA条形码鉴定及系统进化研究[J]. 水产科学, 2023, 42(4): 575-584. |
[5] |
姜洁明, 刘鹰, 刘奇, 闫红伟. 硬骨鱼类性别分化过程的表观遗传机制研究进展[J]. 水产科学, 2023, 42(4): 726-734. |
[6] |
丁祝进, 崔虎军, 谷昭天, 赵晓恒, 程汉良. 鱼类巨噬细胞标记物的研究进展[J]. 水产科学, 2023, 42(3): 517-526. |
[7] |
陈松林, 林欣, 郑国栋, 邹曙明. 低氧对鲂鲌杂交种F3鳃结构及生理生化的影响[J]. 水产科学, 2023, 42(2): 214-221. |
[8] |
刘修泽, 吉光, 王彬, 段妍, 王小林, 王爱勇, 柴雨, 孙明, 郭栋, 董婧, 王源元, 田杨. 大连海域5种经济鱼类的生长、死亡及资源合理利用研究[J]. 水产科学, 2023, 42(1): 73-80. |
[9] |
张琳依, 夏青, 刘岩, 贾哲宇, 柯悦, 程晶, 任丹丹, 何云海, 汪秋宽. 岩藻聚糖硫酸酯抗炎、抗氧化及其交互作用研究进展[J]. 水产科学, 2023, 42(1): 157-166. |
[10] |
唐晟凯, 刘燕山, 王华, 李大命, 张彤晴, 孙晶莹, 许飞, 王志浩. 环境DNA技术在邵伯湖鱼类资源监测中的应用[J]. 水产科学, 2022, 41(6): 1007-1016. |
[11] |
田源, 吴耀, 祝国荣, 赵高志, 林茜, 姚德政, 彭俊杰. 淡水养殖中水生植物对水产鱼类的作用研究进展[J]. 水产科学, 2022, 41(2): 336-342. |
[12] |
张宇柔, 陈玉珂, 于梦楠, 雷新雨, 王嘉婧, 高永生, 王秋举, MAHMOUD M. Elsadek, 张东鸣. 益生芽孢杆菌对鱼类生长与抗病力影响的研究进展[J]. 水产科学, 2022, 41(2): 325-335. |
[13] |
韩军军, 陈朋, 祁峰, 封永辉, 阿地力, 胡江伟, 张钰, 蔡林钢, 张人铭. 新疆渭干河流域鱼类资源现状[J]. 水产科学, 2022, 41(1): 92-101. |
[14] |
李少刚, 李永芹, 许乐乐, 陈道海, 王锂韫. 日本无针乌贼胚胎期眼部发育相关基因的研究[J]. 水产科学, 2021, 40(4): 553-560. |
[15] |
罗智文, 董志祥, 林连兵, 张棋麟. 鱼类重要免疫器官抗菌机制的研究进展[J]. 水产科学, 2021, 40(4): 624-634. |
|
|
|
|