|
|
海草床的固碳潜力及其生物量监测方法研究进展 |
于国旭1, 张彦浩2, 赵祥2, 姜晶晶2, 郭栋3 |
1.长岛国家海洋公园管理中心,山东 烟台 265800; 2.中国海洋大学,海水养殖教育部重点实验室,山东 青岛 266003; 3.辽宁省海洋水产科学研究院,农业农村部水产种质资源保护与发掘利用重点实验室,辽宁 大连 116023 |
|
Research Advancement on Potential of Carbon Sink and Biomass Monitoring Methods of Seagrass Beds:a Review |
YU Guoxu1, ZHANG Yanhao2, ZHAO Xiang2, JIANG Jingjing2, GUO Dong3 |
1. The Marine Ecological Civilization Comprehensive Experimental Area of Changdao, Yantai 265800, China; 2. The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003; 3. Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China |
引用本文: |
于国旭, 张彦浩, 赵祥, 姜晶晶, 郭栋. 海草床的固碳潜力及其生物量监测方法研究进展[J]. 水产科学, 2024, 43(3): 499-508.
YU Guoxu, ZHANG Yanhao, ZHAO Xiang, JIANG Jingjing, GUO Dong. Research Advancement on Potential of Carbon Sink and Biomass Monitoring Methods of Seagrass Beds:a Review. 水产科学, 2024, 43(3): 499-508.
|
|
|
|
链接本文: |
http://www.shchkx.com/CN/10.16378/j.cnki.1003-1111.23007 或 http://www.shchkx.com/CN/Y2024/V43/I3/499 |
[1] AKHAND A, WATANABE K, CHANDA A, et al. Lateral carbon fluxes and CO2 evasion from a subtropical mangrove-seagrass-coral continuum[J]. Science of the Total Environment,2021,752:142190. [2] PROCACCINI G, OLSEN J L, REUSCH T B H. Contribution of genetics and genomics to seagrass biology and conservation[J]. Journal of Experimental Marine Biology and Ecology,2007,350(1/2):234-259. [3] SHORT F, CARRUTHERS T, DENNISON W, et al. Global seagrass distribution and diversity:a bioregional model[J]. Journal of Experimental Marine Biology and Ecology,2007,350(1/2):3-20. [4] MARBÀ N, DUARTE C M. Scaling of ramet size and spacing in seagrasses:implications for stand development[J]. Aquatic Botany,2003,77(2):87-98. [5] XU S C, QIAO Y L, XU S, et al. Diversity, distribution and conservation of seagrass in coastal waters of the Liaodong Peninsula, North Yellow Sea, Northern China:implications for seagrass conservation[J]. Marine Pollution Bulletin,2021,167:112261. [6] FOURQUREAN J W, DUARTE C M, KENNEDY H, et al. Seagrass ecosystems as a globally significant carbon stock[J]. Nature Geoscience,2012,5(7):505-509. [7] NELLEMANN C, CORCORAN E, DUARTE C M, et al. Blue Carbon: the Role of Healthy Ocean in Binding Carbon[R]. Arendal: United Nations Environment Programme, GRID-Arendal, 2009:16-19. [8] DUARTE C M, LOSADA I J, HENDRIKS I E, et al. The role of coastal plant communities for climate change mitigation and adaptation[J]. Nature Climate Change,2013,3(11):961-968. [9] WAYCOTT M, DUARTE C M, CARRUTHERS T J B, et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems[J]. Proceedings of the National Academy of Sciences of the United States of America,2009,106(30):12377-12381. [10] CASTELLANOS-IGLESIAS S, SIRET-MARTÍNEZ S L, DI DOMENICO M, et al. Epiphytic hydroid community as sentinels of seagrass condition and human impacts[J]. Marine Pollution Bulletin,2021,173:112939. [11] MACREADIE P I, BAIRD M E, TREVATHAN-TACKETT S M, et al. Quantifying and modelling the carbon sequestration capacity of seagrass meadows:a critical assessment[J]. Marine Pollution Bulletin,2014,83(2):430-439. [12] MARBÀ N, ARIAS-ORTIZ A, MASQUÉ P, et al. Impact of seagrass loss and subsequent revegetation on carbon sequestration and stocks[J]. Journal of Ecology,2015,103(2):296-302. [13] THORHAUG A, POULOS H M, LÓPEZ-PORTILLO J, et al. Seagrass blue carbon dynamics in the Gulf of Mexico:stocks, losses from anthropogenic disturbance, and gains through seagrass restoration[J]. Science of the Total Environment,2017,605/606:626-636. [14] YUE S D, ZHANG X M, XU S C, et al. The super typhoon Lekima (2019) resulted in massive losses in large seagrass (Zostera japonica) meadows, soil organic carbon and nitrogen pools in the intertidal Yellow River Delta, China[J]. Science of the Total Environment,2021,793:148398. [15] 段克,刘峥延,李刚,等.滨海蓝碳生态系统保护与碳交易机制研究[J].中国国土资源经济,2021,34(12):37-47. [16] MACREADIE P I, COSTA M D P, ATWOOD T B, et al. Blue carbon as a natural climate solution[J]. Nature Reviews Earth & Environment,2021,2(12):826-839. [17] ORTH R J, LEFCHECK J S, MCGLATHERY K S, et al. Restoration of seagrass habitat leads to rapid recovery of coastal ecosystem services[J]. Science Advances,2020,6(41):eabc6434. [18] MCLEOD E, CHMURA G L, BOUILLON S, et al. A blueprint for blue carbon:toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2[J]. Frontiers in Ecology and the Environment,2011,9(10):552-560. [19] KENNEDY H, BEGGINS J, DUARTE C M, et al. Seagrass sediments as a global carbon sink: isotopic constraints[J]. Global Biogeochemical Cycles, 2010, 24(4):1-8. [20] GUY H. The microbial role in carbon cycling within seagrass sediments[J]. The Plymouth Student Scientist,2010,3(1):234-244. [21] LI L L, JIANG Z J, WU Y C, et al. Interspecific differences in root exudation for three tropical seagrasses and sediment pore-water dissolved organic carbon beneath them[J]. Marine Pollution Bulletin,2021,173:113059. [22] LAVERY P S, MATEO M Á, SERRANO O, et al. Variability in the carbon storage of seagrass habitats and its implications for global estimates of blue carbon ecosystem service[J]. PLoS One,2013,8(9):e73748. [23] SERRANO O, ROZAIMI M, LAVERY P S, et al. Organic chemistry insights for the exceptional soil carbon storage of the seagrass Posidonia australis[J]. Estuarine, Coastal and Shelf Science,2020,237:106662. [24] DUARTE C M, MIDDELBURG J J, CARACO N. Major role of marine vegetation on the oceanic carbon cycle[J]. Biogeosciences,2005,2(1):1-8. [25] ZHALNINA K, LOUIE K B, HAO Z, et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly[J]. Nature Microbiology,2018,3(4):470-480. [26] DUBOIS S, SAVOYE N, GRÉMARE A, et al. Origin and composition of sediment organic matter in a coastal semi-enclosed ecosystem:an elemental and isotopic study at the ecosystem space scale[J]. Journal of Marine Systems,2012,94:64-73. [27] KENNEDY H, GACIA E, KENNEDY D P, et al. Organic carbon sources to SE Asian coastal sediments[J]. Estuarine, Coastal and Shelf Science,2004,60(1):59-68. [28] AGAWIN N S R, DUARTE C M. Evidence of direct particle trapping by a tropical seagrass meadow[J]. Estuaries,2002,25(6):1205-1209. [29] MIYAJIMA T, HORI M, HAMAGUCHI M, et al. Geographic variability in organic carbon stock and accumulation rate in sediments of East and Southeast Asian seagrass meadows[J]. Global Biogeochemical Cycles,2015,29(4):397-415. [30] MOHAPATRA M, MANU S, DASH S P, et al. Seagrasses and local environment control the bacterial community structure and carbon substrate utilization in brackish sediments[J]. Journal of Environmental Management,2022,314:115013. [31] LIU S L, JIANG Z J, WU Y C, et al. Macroalgae bloom decay decreases the sediment organic carbon sequestration potential in tropical seagrass meadows of the South China Sea[J]. Marine Pollution Bulletin,2019,138:598-603. [32] 刘松林,江志坚,吴云超,等.海草床沉积物储碳机制及其对富营养化的响应[J].科学通报,2017,62(28/29):3309-3318. [33] JØRGENSEN B B. Mineralization of organic matter in the sea bed—the role of sulphate reduction[J]. Nature,1982,296(5858):643-645. [34] SHAO X X, YANG W Y, WU M. Seasonal dynamics of soil labile organic carbon and enzyme activities in relation to vegetation types in Hangzhou Bay tidal flat wetland[J]. PLoS One,2015,10(11):e0142677. [35] SMITH A C, KOSTKA J E, DEVEREUX R, et al. Seasonal composition and activity of sulfate-reducing prokaryotic communities in seagrass bed sediments[J]. Aquatic Microbial Ecology,2004,37:183-195. [36] 刘松林,江志坚,张景平,等.海南新村湾海草床沉积物影响有机碳转化的主要酶活性特征及其对营养负荷的响应[J].海洋环境科学,2017,36(1):1-7. [37] 邱广龙,范航清,周浩郎,等.广西潮间带海草的移植恢复[J].海洋科学,2014,38(6):24-30. [38] 范航清,邱广龙,石雅君.中国亚热带海草生理生态学研究[M].北京:科学出版社,2011:52-62. [39] MISHRA A K, CABAÇO S, DE LOS SANTOS C B, et al. Long-term effects of elevated CO2 on the population dynamics of the seagrass Cymodocea nodosa:evidence from volcanic seeps[J]. Marine Pollution Bulletin,2021,162:111824. [40] STANKOVIC M, HAYASHIZAKI K I, TUNTIPRAPAS P, et al. Two decades of seagrass area change:organic carbon sources and stock[J]. Marine Pollution Bulletin,2021,163:111913. [41] 高亚平,方建光,唐望,等.桑沟湾大叶藻海草床生态系统碳汇扩增力的估算[J].渔业科学进展,2013,34(1):17-21. [42] KUWAE T, HORI M. Blue carbon in Shallow Coastal Ecosystems: Carbon Dynamics, Policy, and Implementation [M]. Singapore: Springer, 2019:101-127. [43] BOER W F. Seagrass-sediment interactions, positive feedbacks and critical thresholds for occurrence:a review[J]. Hydrobiologia,2007,591(1):5-24. [44] DUARTE C M, CEBRIÁN J. The fate of marine autotrophic production[J]. Limnology and Oceanography,1996,41(8):1758-1766. [45] DUARTE C M, CHISCANO C L. Seagrass biomass and production:a reassessment[J]. Aquatic Botany,1999,65(1/2/3/4):159-174. [46] IBARRA-OBANDO S E, BOUDOURESQUE C F, ROUX M. Leaf dynamics and production of a Zostera marina bed near its southern distributional limit[J]. Aquatic Botany,1997,58(2):99-112. [47] SAND-JENSEN K. Biomass, net production and growth dynamics in an eelgrass (Zostera marina L. ) population in Vellerup Vig, Denmark[J]. Ophelia,1975,14(1/2):185-201. [48] JIMENEZ K L, STARR G, STAUDHAMMER C L, et al. Carbon dioxide exchange rates from short- and long-hydroperiod Everglades freshwater marsh[J]. Journal of Geophysical Research:Biogeosciences,2012,117(G4):G04009. [49] DENNISON W C. Seagrasses: biology, ecology and conservation[J]. Botanica Marina, 2009, 52(4): 365-366. [50] DE LOS SANTOS C B, KRÅNG A S, INFANTES E. Microplastic retention by marine vegetated canopies: simulations with seagrass meadows in a hydraulic flume[J]. Environmental Pollution,2021,269:116050. [51] WAHYUDI A J, TRIANA K, AFDAL A, et al. The decomposition rate of the organic carbon content of suspended particulate matter in the tropical seagrass meadows[J]. Acta Oceanologica Sinica,2021,40(8):44-52. [52] POTOUROGLOU M, WHITLOCK D, MILATOVIC L, et al. The sediment carbon stocks of intertidal seagrass meadows in Scotland[J]. Estuarine, Coastal and Shelf Science,2021,258:107442. [53] LO IACONO C, MATEO M A, GRÀCIA E, et al. Very high-resolution seismo-acoustic imaging of seagrass meadows (Mediterranean Sea):implications for carbon sink estimates[J]. Geophysical Research Letters,2008,35(18):L18601. [54] MARTENS C S, ALBERT D B, ALPERIN M J. Biogeochemical processes controlling methane in gassy coastal sediments—part 1. A model coupling organic matter flux to gas production, oxidation and transport[J]. Continental Shelf Research,1998,18(14/15):1741-1770. [55] JIAO N Z, HERNDL G J, HANSELL D A, et al. Microbial production of recalcitrant dissolved organic matter:long-term carbon storage in the global ocean[J]. Nature Reviews. Microbiology,2010,8(8):593-599. [56] SINSABAUGH R L, LAUBER C L, WEINTRAUB M N, et al. Stoichiometry of soil enzyme activity at global scale[J]. Ecology Letters,2008,11(11):1252-1264. [57] SMITH R D, DENNISON W C, ALBERTE R S. Role of seagrass photosynthesis in root aerobic processes[J]. Plant Physiology,1984,74(4):1055-1058. [58] SORRELL B K, DROMGOOLE F I. Oxygen transport in the submerged freshwater macrophyte Egeria densa Planch: Ⅱ. Role of lacunar gas pressures[J]. Aquatic Botany,1988,31(1/2):93-106. [59] LYIMO L D, GULLSTRÖM M, LYIMO T J, et al. Shading and simulated grazing increase the sulphide pool and methane emission in a tropical seagrass meadow[J]. Marine Pollution Bulletin,2018,134:89-93. [60] BAHLMANN E, WEINBERG I, LAVRICˇ J V, et al. Tidal controls on trace gas dynamics in a seagrass meadow of the Ria Formosa lagoon (southern Portugal)[J]. Biogeosciences,2015,12(6):1683-1696. [61] GACIA E, DUARTE C M, MIDDELBURG J J. Carbon and nutrient deposition in a Mediterranean seagrass (Posidonia oceanica) meadow[J]. Limnology and Oceanography,2002,47(1):23-32. [62] MATEO M A, ROMERO J. Evaluating seagrass leaf litter decomposition:an experimental comparison between litter-bag and oxygen-uptake methods[J]. Journal of Experimental Marine Biology and Ecology,1996,202(2):97-106. [63] LAVERY P S, ROZAIMI M, SERRANO O, et al. Seagrass Blue Carbon:What is it Made of and How Well is it Sequestered?[C]. Geelong: The 52nd Australian Marine Science Association (AMSA) Annual Conference, 2015. [64] HOWARD J, HOYT S, ISENSEE K, et al. Coastal blue carbon methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrass meadows[R]. Nairobi: The United Nations Environment Programme, 2014: 68-76. [65] VIEIRA V M N C S, LOPES I E, CREED J C. A model for the biomass-density dynamics of seagrasses developed and calibrated on global data[J]. BMC Ecology,2019,19(1):4. [66] HILL V J, ZIMMERMAN R C, BISSETT W P, et al. Evaluating light availability, seagrass biomass, and productivity using hyperspectral airborne remote sensing in Saint Joseph′s Bay, Florida[J]. Estuaries and Coasts,2014,37(6):1467-1489. [67] 李梦.广西海草床沉积物碳储量研究[D].南宁:广西师范学院,2018. [68] KUTSER T, VAHTMÄE E, ROELFSEMA C M, et al. Photo-library method for mapping seagrass biomass[J]. Estuarine, Coastal and Shelf Science,2007,75(4):559-563. [69] 中国海洋工程咨询协会. 海岸带生态系统现状调查与评估技术导则 第6部分:海草床:T/CAOE 20.6—2020[S]. 北京:中国标准出版社,2020:3-4. [70] 李政,李文涛,杨晓龙,等.威海荣成桑沟湾海域海草床分布现状及其生态特征[J].海洋科学,2020,44(10):52-59. [71] COSTA V, SERÔDIO J, LILLEBØ A I, et al. Use of hyperspectral reflectance to non-destructively estimate seagrass Zostera noltei biomass[J]. Ecological Indicators,2021,121:107018. [72] MEDEROS-BARRERA A, MARCELLO J, EUGENIO F, et al. Seagrass mapping using high resolution multispectral satellite imagery:a comparison of water column correction models[J]. International Journal of Applied Earth Observation and Geoinformation,2022,113:102990. [73] 陈春华,蔡绍孟,刘建波,等.无人机航测技术在海草床调查中的试点应用[J].应用海洋学学报,2022,41(4):637-643. [74] ZOFFOLI M, FROUIN R, KAMPEL M. Water column correction for coral reef studies by remote sensing[J]. Sensors,2014,14(9):16881-16931. [75] WABNITZ C C, ANDRÉFOUËT S, TORRES-PULLIZA D, et al. Regional-scale seagrass habitat mapping in the Wider Caribbean region using Landsat sensors:applications to conservation and ecology[J]. Remote Sensing of Environment,2008,112(8):3455-3467. [76] DIERSSEN H M, ZIMMERMAN R C, DRAKE L A, et al. Benthic ecology from space:optics and net primary production in seagrass and benthic algae across the Great Bahama Bank[J]. Marine Ecology Progress Series,2010,411:1-15. [77] GULLSTRÖM M, LUNDÉN B, BODIN M, et al. Assessment of changes in the seagrass-dominated submerged vegetation of tropical Chwaka Bay (Zanzibar) using satellite remote sensing[J]. Estuarine, Coastal and Shelf Science,2006,67(3):399-408. [78] MELLORS J E. An evaluation of a rapid visual technique for estimating seagrass biomass[J]. Aquatic Botany,1991,42(1):67-73. [79] LYONS M, ROELFSEMA C, KOVACS E, et al. Rapid monitoring of seagrass biomass using a simple linear modelling approach, in the field and from space[J]. Marine Ecology Progress Series,2015,530:1-14. [80] MORRIS J T, BARBER D C, CALLAWAY J C, et al. Contributions of organic and inorganic matter to sediment volume and accretion in tidal wetlands at steady state[J]. Earth’s Future,2016,4(4):110-121. [81] NURDIN N, AMRI K, MASHORENG S, et al. Estimation of seagrass biomass by in situ measurement and remote sensing technology on small islands, Indonesia[J]. Ocean Science Journal,2022,57(1):118-129. [82] ZIMMERMAN R C, CABELLO-PASINI A, ALBERTE R S. Modeling daily production of aquatic macrophytes from irradiance measurements:a comparative analysis[J]. Marine Ecology Progress Series,1994,114:185-196. [83] 杨顶田,刘素敏,单秀娟.海草碳通量的卫星遥感检测研究进展[J].热带海洋学报,2013,32(6):108-114. [84] 曾伟生.立木生物量建模样本数据采集方法研究[J].中南林业调查规划,2010,29(2):1-6. |
|
|
|