Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China
Abstract:In order to investigate the effect of seasonal variation on the expression of genes from Toll-like receptor (TLR) signaling pathway of sea cucumber Apostichopus japonicus, the transcriptional expression levels of major factors from TLR signaling pathway were detected in sea cucumber with body weight of (236±5) g sampled from a sea cucumber culture pond from introduce breeding center in Liaoning Ocean and Fisheries Science Research Institute in the middle of each month from January to December 2018 by qRT-PCR method, and the water environmental parameters in the pond were analyzed with handheld multiparameter meter for evaluation of the correlations between the seasonal variation of TLR-related genes expression levels and the environmental parameters by Pearson's correlation test. The transcriptional expression analysis showed that there were low expression levels of Toll, IRAK4, TAK, P105, Rel, TLR3, TBK and IRF8 genes in June, indicating that TLR pathway was provided with low response ability in June. The correlation analysis showed that there was significantly positive correlation between MyD88 and TRAF6 genes expression and dissolved oxygen concentration, significantly positive correlation between TAK and TBK genes expression and redox potential, significantly negative correlation between IRF8 gene expression and water temperature, significantly positive correlation between SARM gene expression and water temperature, and significantly positive correlation between IκKβ gene expression and pHmv. The finding implied that the environmental factors led to important and complicated effects on the expression of TLR-related factors in the sea cucumber, among which the redox potential was key environmental factor for both MyD88-dependent and -independent pathways, the dissolved oxygen and pHmv were key environmental factors for MyD88-dependent pathway, and temperature was key environmental factor for MyD88-independent pathway.
[1] HAN Q X, KEESING J K, LIU D Y. A review of sea cucumber aquaculture, ranching, and stock enhancement in China[J]. Reviews in Fisheries Science & Aquaculture,2016,24(4):326-341. [2] 袁秀堂,杨红生,王丽丽,等.夏眠对刺参(Apostichopus japonicus (selenka))能量收支的影响[J].生态学报,2007,27(8):3155-3161. [3] 于东祥,宋本祥.池塘养殖刺参幼参的成活率变化和生长特点[J].中国水产科学,1999,6(3):109-110. [4] 常亚青.海参、海胆生物学研究与养殖[M].北京:海洋出版社,2004. [5] 韩丽蓉,徐玮,汪东风,等.壳寡糖对刺参生长、免疫反应和抗病力的影响[J].中国海洋大学学报(自然科学版),2014,44(3):34-39. [6] AMABILE-CUEVAS C F, GARDENAS-GARCIS M, LUDGA M. Antibiotic resistance [J].American Scientist,1995,83:320-329. [7] DOPAZO C P, LEMOS M L, LODEIROS C, et al. Inhibitory activity of antibiotic-producing marine bacteria against fish pathogens[J]. The Journal of Applied Bacteriology,1988,65(2):97-101. [8] 王印庚,荣小军,张春云,等.养殖海参主要疾病及防治技术[J].海洋科学,2005,29(3):1-7. [9] 叶海斌,樊英,李天保,等.刺参免疫防御机制研究进展[J].安徽农业科学,2018,46(16):27-29. [10] 张峰,王海峰,宫晶,等.仿刺参体腔液补体类似物化学发光免疫检测[J].核农学报,2007,21(4):413-416. [11] 汪婷婷.刺参三种免疫基因的克隆、表达及功能研究[D].大连:大连理工大学,2012. [12] KAWAI T, AKIRA S. The role of pattern-recognition receptors in innate immunity:update on Toll-like receptors[J]. Nature Immunology,2010,11(5):373-384. [13] 蒙苗,吴文林.对虾Toll样受体通路研究进展[J].福建轻纺,2017(5):40-42. [14] VOGEL G. Fly development genes lead to immune find[J]. Science,1998,281(5385):1942-1944. [15] LIN S C, LO Y C, WU H. Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling[J]. Nature,2010,465(7300):885-890. [16] MUZIO M, NI J, FENG P, et al. IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling[J]. Science,1997,278(5343):1612-1615. [17] KUBO-MURAI M, HAZEKI K, NIGORIKAWA K, et al. IRAK-4-dependent degradation of IRAK-1 is a negative feedback signal for TLR-mediated NF-κB activation[J]. The Journal of Biochemistry,2008,143(3):295-302. [18] SHIBUYA H, YAMAGUCHI K, SHIRAKABE K, et al. TAB1:an activator of the TAK1 MAPKKK in TGF-beta signal transduction[J]. Science,1996,272(5265):1179-1182. [19] TAKAESU G, KISHIDA S, HIYAMA A, et al. TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway[J]. Molecular Cell,2000,5(4):649-658. [20] HUSEBYE H, AUNE M H, STENVIK J, et al. The Rab11a GTPase controls toll-like receptor 4-induced activation of interferon regulatory factor-3 on phagosomes[J]. Immunity,2010,33(4):583-596. [21] PALSSON-MCDERMOTT E M, DOYLE S L, MC-GETTRICK A F, et al. TAG, a splice variant of the adaptor TRAM, negatively regulates the adaptor MyD88-independent TLR4 pathway[J]. Nature Immunology,2009,10(6):579-586. [22] 王摆,陈仲,关晓燕,等.辽东湾仿刺参养殖池塘底质环境季节变化[J].水产科学,2016,35(6):607-612. [23] CARTY M, GOODBODY R, SCHRÖDER M, et al. The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling[J]. Nature Immunology,2006,7(10):1074-1081. [24] SUN H J, ZHOU Z C, DONG Y, et al. Identification and expression analysis of two Toll-like receptor genes from sea cucumber (Apostichopus japonicus)[J]. Fish & Shellfish Immunology,2013,34(1):147-158. [25] LU Y L, LI C H, ZHANG P, et al. Two adaptor molecules of MyD88 and TRAF6 in Apostichopus japonicus Toll signaling cascade:molecular cloning and expression analysis[J]. Developmental & Comparative Immunology,2013,41(4):498-504. [26] CUI Y, JIANG L T, XING R L, et al. Cloning, expression analysis and functional characterization of an interleukin-1 receptor-associated kinase 4 from Apostichopus japonicus[J]. Molecular Immunology,2018,101:479-487. [27] WANG T T, SUN Y X, JIN L J, et al. Aj-rel and Aj-p105, two evolutionary conserved NF-κB homologues in sea cucumber (Apostichopus japonicus) and their involvement in LPS induced immunity[J]. Fish & Shellfish Immunology,2013,34(1):17-22. [28] YANG L M, CHANG Y Q, WANG Y, et al. Identification and functional characterization of TNF receptor associated factor 3 in the sea cucumber Apostichopus japonicus[J]. Developmental & Comparative Immunology,2016,59:128-135. [29] 方旅平,周宸,黄瑞芳,等.度夏仿刺参病原菌伯麦罗氏弧菌的分离鉴定和特征研究[J].厦门大学学报(自然科学版),2014,53(2):273-282. [30] YUAN S C, WU K, YANG M Y, et al. Amphioxus SARM involved in neural development may function as a suppressor of TLR signaling[J]. The Journal of Immunology,2010,184(12):6874-6881. [31] JU X H, XU H J, YONG Y H, et al. Heat stress upregulation of Toll-like receptors 2/4 and acute inflammatory cytokines in peripheral blood mononuclear cell (PBMC) of Bama miniature pigs:an in vivo and in vitro study[J]. Animal,2014,8(9):1462-1468. [32] VARASTEH S, BRABER S, AKBARI P, et al. Differences in susceptibility to heat stress along the chicken intestine and the protective effects of galacto-oligosaccharides[J]. PLoS One,2015,10(9):e0138975. [33] STRONG R A, SILVA E B, CHENG H W, et al. Acute brief heat stress in late gestation alters neonatal calf innate immune functions[J]. Journal of Dairy Science,2015,98(11):7771-7783. [34] BHARATI J, DANGI S S, MISHRA S R, et al. Expression analysis of Toll like receptors and interleukins in Tharparkar cattle during acclimation to heat stress exposure[J]. Journal of Thermal Biology,2017,65:48-56. [35] SUNDARAM A Y M, CONSUEGRA S, KIRON V, et al. Positive selection pressure within teleost Toll-like receptors tlr21 and tlr22 subfamilies and their response to temperature stress and microbial components in zebrafish[J]. Molecular Biology Reports,2012,39(9):8965-8975. [36] GREEN T J, MONTAGNANI C, BENKENDORFF K, et al. Ontogeny and water temperature influences the antiviral response of the Pacific oyster, Crassostrea gigas[J]. Fish & Shellfish Immunology,2014,36(1):151-157. [37] Basu M, Paichha M, Swain B, et al. Modulation of TLR2, TLR4, TLR5, NOD1 and NOD2 receptor gene expressions and their downstream signaling molecules following thermal stress in the Indian major carp catla (Catla catla)[J]. 3Biotech, 2015,5:1021-1030. [38] 王印庚.刺参健康养殖与病害防控技术丛解[M].北京:中国农业出版社,2014. [39] 董云伟,董双林.刺参对温度适应的生理生态学研究进展[J].中国海洋大学学报(自然科学版),2009,39(5):908-912. [40] 李晓英,张冬冬,徐梦雪,等.5个不同地理群体仿刺参的高温耐受力及养殖性能评估[J].海洋渔业,2020,42(6):722-731. [41] 黄华伟,王印庚,陈霞,等.低温期养殖刺参腐皮综合征的发生与环境因子间的关系[J].水产科技情报,2011,38(6):292-297. [42] 郑慧,李彬,荣小军,等.盐度和溶解氧对刺参非特异性免疫酶活性的影响[J].渔业科学进展,2014,35(1):118-124. [43] 董云伟,董双林,田相利,等.不同水温对刺参幼参生长、呼吸及体组成的影响[J].中国水产科学,2005,12(1):33-37. [44] 李宝泉,杨红生,张涛,等.温度和体重对刺参呼吸和排泄的影响[J].海洋与湖沼,2002,33(2):182-187. [45] 于东祥.海参健康养殖技术[M].北京:海洋出版社,2005. [46] 陈爱华.环境因子对刺参的影响及对策[J].河北渔业,2007(3):19. [47] 郑智亮.仿刺参TLR信号通路相关基因的克隆及表达分析[D].大连:大连工业大学,2019. [48] 臧维玲.海水的氧化还原电位[J].海洋科学,1986,10(1):71-72. [49] 陈燕.牙鲆(Paralichthys olivaceus)TRAF6基因和TAK1基因的克隆及免疫应答研究[D].青岛:中国海洋大学,2015.