Effects of Microplastics on Activity, Digestion and Antioxidation Capability of Onchidium reevesii
SUN Qirui1,2, ZHANG Jiwu2, JIANG Hongxing3, ZHANG Hu4, MA Zhihao1,2, QIU Ming2, QIAO Guo2, LI Qiang 2, ZHANG Mingming2
1. College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; 2. School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224051, China; 3. Rural Work Bureau, Nanxiashu Street, Wujin District, Changzhou 213166, China; 4. Jiangsu Institute of Marine Fisheries, Nantong 226007, China
Abstract:In order to probe the toxic effect of microplastics exposure on marine beach shellfish, Onchidium reevesii with body weight of (8.3±0.5) g was kept in a 70 cm×50 cm×40 cm plastic tank (90 individuals/tank), and then was exposed to the low microplastics exposure (0.03%, microplastic mass/sediment mass), medium exposure (0.06%), high exposure group (0.09%), and control group (without microplastics). The effects of exposure for 6 h, 24 h, and 48 h on the activity (crawling distance) of O. reevesii, and activities of digestive enzymes and antioxidant enzymes were analyzed. Results showed that weak activities of O. reevesii were obviously observed in acute exposure to microplastics. At 6 h, the activities of protease, amylase (AMS) and lipase (LPS) in stomach and hepatopancreas (P<0.05) were found to be increased in the lower exposure (0.03%) of microplastics, the activity of lipase (LPS) in the intestine was shown to be increased in the medium exposure (0.06%) , and to be decreased in the activity of AMS in the intestine in the higher exposure (0.09%) . For the antioxidation-related enzymyes, the activity of superoxide dismutase (SOD) was increased, catalase (CAT) decreased in the lower exposure, and the contents of malondialdehyde (MDA) increased in hepatopancreas and coelomic fluid (P<0.05) at 6-hour exposure in higher exposure. The findings showed that the acute exposure of microplastics affected activity, digestion and antioxidation capability of O. reevesii obviously, and that provide a certain reference value for the species protection of O. reevesii.
[1] LACERDA A L D F, RODRIGUES L D S, VAN SEBILLE E, et al.Plastics in sea surface waters around the Antarctic Peninsula[J].Scientific Reports,2019,9(1):3977. [2] DI M X, WANG J.Microplastics in surface waters and sediments of the Three Gorges Reservoir, China[J].Science of the Total Environment,2018,616/617:1620-1627. [3] MURRAY F, COWIE P R.Plastic contamination in the decapod crustacean Nephrops norvegicus (Linnaeus,1758)[J].Marine Pollution Bulletin,2011,62(6):1207-1217. [4] THOMPSON R C, OLSEN Y, MITCHELL R P, et al.Lost at sea:where is all the plastic?[J].Science,2004,304(5672):838. [5] BROWNE M A, DISSANAYAKE A, GALLOWAY T S, et al.Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L)[J].Environmental Science & Technology,2008,42(13):5026-5031. [6] HALL N M, BERRY K L E, RINTOUL L, et al.Microplastic ingestion by scleractinian corals[J].Marine Biology,2015,162(3):725-732. [7] OLIVEIRA M, RIBEIRO A, HYLLAND K, et al.Single and combined effects of microplastics and pyrene on juveniles (0+ group) of the common goby Pomatoschistus microps (Teleostei, Gobiidae)[J].Ecological Indicators,2013,34:641-647. [8] BESSELING E, FOEKEMA E M, VAN FRANEKER J A, et al.Microplastic in a macro filter feeder:humpback whale Megaptera novaeangliae[J].Marine Pollution Bulletin,2015,95(1):248-252. [9] JEONG C B, WON E J, KANG H M, et al.Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-p38 activation in the monogonont rotifer (Brachionus koreanus)[J].Environmental Science & Technology,2016,50(16):8849-8857. [10] TANG J H, WANG X, YIN J, et al.Molecular characterization of thioredoxin reductase in waterflea Daphnia magna and its expression regulation by polystyrene microplastics[J].Aquatic Toxicology,2019,208:90-97. [11] CHOI J S, HONG S H, PARK J W.Evaluation of microplastic toxicity in accordance with different sizes and exposure times in the marine copepod Tigriopus japonicus[J].Marine Environmental Research,2020,153:104838. [12] PAUL-PONT I, LACROIX C, GONZÁLEZ FERNÁNDEZ C, et al.Exposure of marine mussels Mytilus spp.to polystyrene microplastics:toxicity and influence on fluoranthene bioaccumulation[J].Environmental Pollution,2016,216:724-737. [13] ROCHMAN C M, HOH E, KUROBE T, et al.Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress[J].Scientific Reports,2013,3:3263. [14] LU Y F, ZHANG Y, DENG Y F, et al.Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver[J].Environmental Science & Technology,2016,50(7):4054-4060. [15] VAN CAUWENBERGHE L, CLAESSENS M, VANDEGEHUCHTE M B, et al.Microplastics are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living in natural habitats[J].Environmental Pollution,2015,199:10-17. [16] SUSSARELLU R, SUQUET M, THOMAS Y, et al.Oyster reproduction is affected by exposure to polystyrene microplastics[J].Proceedings of the National Academy of Sciences of the United States of America,2016,113(9):2430-2435. [17] MEEKER J D, SATHYANARAYANA S, SWAN S H.Phthalates and other additives in plastics:human exposure and associated health outcomes[J].Philosophical Transactions of the Royal Society of London.Series B: Biological Sciences,2009,364(1526):2097-2113. [18] KARAMI A, ROMANO N, GALLOWAY T, et al.Virgin microplastics cause toxicity and modulate the impacts of phenanthrene on biomarker responses in African catfish (Clarias gariepinus)[J].Environmental Research,2016,151:58-70. [19] KLUSSMANN-KOLB A, DINAPOLI A, KUHN K, et al.From sea to land and beyond-new insights into the evolution of euthyneuran Gastropoda (Mollusca)[J].BMC Evolutionary Biology,2008,8(1):57. [20] KWAN B K Y, CHAN A K Y, CHEUNG S G, et al.Responses of growth and hemolymph quality in juvenile Chinese horseshoe crab Tachypleus tridentatus (Xiphosura) to sublethal tributyltin and cadmium[J].Ecotoxicology,2015,24(9):1880-1895. [21] 黄金田.石磺及其物种保护[J].水产养殖,2005,26(6):30,41. [22] 王金庆,成永旭,吴旭干,等.瘤背石磺的形态、习性和生殖行为[J].动物学杂志,2005,40(1):32-40. [23] 黄金田,王资生,沈伯平.瘤背石磺的生态习性观察[J].海洋渔业,2004,26(2):103-109. [24] 黄金田,张余霞.瘤背石磺室内温箱养殖试验[J].海洋科学,2004,28(10):14-16. [25] 吕庭莉,杲绍强,张虎,等.瘤背石磺体腔细胞分类、免疫相关酶特性及初步转录组学分析[J].海洋学报,2022,44(2):84-93. [26] 肖海明, 土志涵, 饶榕城, 等. 低氧胁迫对瘤背石磺Toll样受体4、血细胞和免疫酶活性的影响[J]. 水产学报, 2024,48(6):144-156. [27] 邱立言.苏沪沿海瘤背石磺的形态和习性[J].动物学杂志,1991,26(3):33-36. [28] 管菊,沈和定,刘宸,等.瘤背石磺体内重金属铜和镉的净化研究[J].海洋科学,2015,39(1):59-63. [29] 沈永龙,戈贤平,黄金田,等.盐度对瘤背石磺不同部位Na+/K+-ATP酶活性、围心腔液和腹腔液渗透压及离子含量的影响[J].水产学报,2013,37(6):851-857. [30] 何培,张明明,李强,等.我国海洋滩涂主要污染物的研究概况[J].海洋科学,2018,42(8):131-138. [31] VENDEL A,BESSA F, ALVES V E N, et al.Widespread microplastic ingestion by fish assemblages in tropical estuaries subjected to anthropogenic pressures[J].Marine Pollution Bulletin,2017,117(1/2):448-455. [32] GREEN D S.Effects of microplastics on European flat oysters, Ostrea edulis and their associated benthic communities[J].Environmental Pollution,2016,216:95-103. [33] GREEN D S, BOOTS B, SIGWART J, et al.Effects of conventional and biodegradable microplastics on a marine ecosystem engineer (Arenicola marina) and sediment nutrient cycling[J].Environmental Pollution,2016,208:426-434. [34] QU X Y, SU L, LI H X, et al.Assessing the relationship between the abundance and properties of microplastics in water and in mussels[J].Science of the Total Environment,2018,621:679-686. [35] COLE M, LINDEQUE P, FILEMAN E, et al.Microplastic ingestion by zooplankton[J].Environmental Science & Technology,2013,47(12):6646-6655. [36] WEGNER A, BESSELING E, FOEKEMA E M, et al.Effects of nanopolystyrene on the feeding behavior of the blue mussel (Mytilus edulis L.)[J].Environmental Toxicology and Chemistry,2012,31(11):2490-2497. [37] IMHOF H K, IVLEVA N P, SCHMID J, et al.Contamination of beach sediments of a subalpine lake with microplastic particles[J].Current Biology,2013,23(19):R867-R868. [38] GU H X, HU M H, WEI S S, et al.Combined effects of toxic Microcystis aeruginosa and hypoxia on the digestive enzyme activities of the triangle sail mussel Hyriopsis cumingii[J].Aquatic Toxicology,2019,212:241-246. [39] REHSE S, KLOAS W, ZARFL C.Short-term exposure with high concentrations of pristine microplastic particles leads to immobilisation of Daphnia magna[J].Chemosphere,2016,153:91-99. [40] WOODS M N, STACK M E, FIELDS D M, et al.Microplastic fiber uptake, ingestion, and egestion rates in the blue mussel (Mytilus edulis)[J].Marine Pollution Bulletin,2018,137:638-645. [41] BRÅTE I L N, BLÁZQUEZ M, BROOKS S J, et al.Weathering impacts the uptake of polyethylene microparticles from toothpaste in Mediterranean mussels (M. galloprovincialis)[J].Science of the Total Environment,2018,626:1310-1318. [42] MATTSON M P.Hormesis defined[J].Ageing Research Reviews, 2008,7(1):1-7. [43] RIBEIRO F, GARCIA A R, PEREIRA B P, et al.Microplastics effects in Scrobicularia plana[J].Marine Pollution Bulletin,2017,122(1/2):379-391. [44] 佘秋新.昼夜节律及褪黑激素对中华绒螯蟹(Eriocheir sinensis)免疫酶和抗氧化酶活性的影响[D].沈阳:沈阳农业大学,2019. [45] WU X J, CAO W, JIA G, et al.New insights into the role of spermine in enhancing the antioxidant capacity of rat spleen and liver under oxidative stress[J].Animal Nutrition,2017,3(1):85-90. [46] STENTIFORD G D, LONGSHAW M, LYONS B P, et al.Histopathological biomarkers in estuarine fish species for the assessment of biological effects of contaminants[J].Marine Environmental Research,2003,55(2):137-159. [47] LIN T, YU S L, CHEN Y Q, et al.Integrated biomarker responses in zebrafish exposed to sulfonamides[J].Environmental Toxicology and Pharmacology,2014,38(2):444-452. [48] ALIMI O S, FARNER BUDARZ J, HERNANDEZ L M, et al.Microplastics and nanoplastics in aquatic environments:aggregation, deposition, and enhanced contaminant transport[J].Environmental Science & Technology,2018,52(4):1704-1724. [49] GIULIANI M E, BENEDETTI M, ARUKWE A, et al.Transcriptional and catalytic responses of antioxidant and biotransformation pathways in mussels, Mytilus galloprovincialis, exposed to chemical mixtures[J].Aquatic Toxicology,2013,134/135:120-127. [50] KÖGEL T, BJORØY Ø, TOTO B, et al.Micro- and nanoplastic toxicity on aquatic life:determining factors[J].Science of the Total Environment,2020,709:136050. [51] GANDARA E SILVA P P, NOBRE C R, RESAFFE P, et al.Leachate from microplastics impairs larval development in brown mussels[J].Water Research,2016,106:364-370. [52] VON MOOS N, BURKHARDT-HOLM P, KÖHLER A.Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L.after an experimental exposure[J].Environmental Science & Technology,2012,46(20):11327-11335. [53] DÉTRÉE C, GALLARDO-ESCÁRATE C.Polyethylene microbeads induce transcriptional responses with tissue-dependent patterns in the mussel Mytilus galloprovincialis[J].Journal of Molluscan Studies,2017,83(2):220-225. [54] 牟红莉,王瑞旋,林小植,等.微塑料胁迫对近江牡蛎免疫及抗菌力的影响[J].海洋环境科学,2022,41(3):325-330. [55] 柳佳佳,朱效鹏,滕佳,等.微塑料和芘对菲律宾蛤仔的毒性效应研究[J].海洋通报,2021,40(6):644-656.