Abstract:In order to probe the effects of hypoxic stress on the survival, antioxidant indices and respiration-related enzyme activities of surf clam Mactra veneriformis, the surf clam with shell length of (35.91±2.31) mm were put into a plastic box and exposed to dissolved oxygen concentrations of (2.0±0.2) mg/L and (4.0±0.2) mg/L by continuous nitrogen filling, and to dissolved oxygen concentration of (7.5±0.2) mg/L by continuous oxygenation (control group) at water temperature of (20±1) ℃. The survival, antioxidant indices (superoxide dismutase, catalase and malondialdehyde) and activities of respiration-related enzymes (lactate dehydrogenase and pyruvate kinase) were measured at 0, 6, 12, 24, 48 and 72 h of hypoxia stress. The results showed that the survival rate of surf clam was decreased with the decrease in dissolved oxygen concentration, and the stress period, with survival rate of 100% during the experiment in the control group, and dead individuals in 36 h in the treatment groups. There were survival rates of 97.5% in 48 hours in 4.0 mg/L group and 91.67% in 2.0 mg/L group , and at 72 hours the survival rates of 78.66% in 4.0 mg/L group and 67.30% in 2.0 mg/L group. The enzyme activities were significantly affected by stress time and dissolved oxygen concentration (P<0.05), and primarily stable during the experimental period in the control group. An overall trend of first increase and then decrease in antioxidant indices and activities of respiratory related enzymes was observed in 4.0 mg/L group and 2.0 mg/L group, with the maximal activities of superoxide dismutase and catalase in hepatopancreas at 6 h, significantly higher than those at other time points. The activity of pyruvate kinase in the gill filaments was found to be higher in the treatment groups, with the maximum content of malondialdehyde at 12 hours, than that in the control group. The findings will help to clarify the mechanism of the effects of hypoxia stress on the physiological and biochemical activities of surf clam, and provide a reference with further exploring the mechanism of hypoxia tolerance of surf clam and the creation of new germplasm resistant to hypoxia.
[1] 江天棋.厚壳贻贝对高温和低氧胁迫的生理生化响应研究[D].上海:上海海洋大学,2020. [2] 刘凯凯,唐君玮,袁廷柱,等.缺氧胁迫及对贝类免疫系统的影响[J].广西科学院学报,2020,36(2):124-130. [3] 王盼,史文军,万夕和,等.低氧-复氧对脊尾白虾呼吸代谢和抗氧化酶活力的影响[J].渔业科学进展,2021,42(4):106-115. [4] 夏玉莹,张继红,刘毅.低氧胁迫下虾夷扇贝的行为特征及生理生化响应[J].中国水产科学,2021,28(10):1319-1328. [5] 徐贺,陈秀梅,王桂芹,等.低氧胁迫在水产养殖中的研究进展[J].饲料工业,2016,37(2):33-37. [6] 周作强,丁晴晴,刘其根,等.缺氧对贝类的胁迫效应及对其免疫系统的影响[J].生态毒理学报,2013,8(3):324-330. [7] 李峤.经济贝类对低氧耐受性的研究——以菲律宾蛤仔和栉孔扇贝为例[D].青岛:中国科学院大学(中国科学院海洋研究所),2019. [8] 王盼.脊尾白虾对低氧-复氧胁迫的生理响应及其转录组学分析研究[D].上海:上海海洋大学,2021. [9] 杨明.低氧胁迫对青虾酶活、组织结构及肠道微生物的影响[D].南京:南京农业大学,2019. [10] 郑伟,董志国,李晓英,等.海州湾养殖四角蛤蜊体内组织中重金属分布差异及安全评价[J].食品科学,2011,32(3):199-203. [11] 王李宝,凌云,黎慧,等.不同季节四角蛤蜊软体中主要营养成分分析[J].水产养殖,2013,34(1):4-6. [12] 赵越,王金海,张丛尧,等.培育密度及饵料种类对四角蛤蜊幼虫生长、存活及变态的影响[J].水产科学,2011,30(3):160-163. [13] 柯巧珍.四角蛤蜊(Mactraveneriformis)和等边浅蛤(Gomphina aequilatera)的繁殖生理学研究[D].青岛:中国海洋大学,2012. [14] ZHU N, YANG Y Y, XU H, et al. Bioaccumulation of decabromodiphenyl ether affects the antioxidant system in the clam Mactra veneriformis[J]. Environmental Toxicology and Pharmacology,2019,68:19-26. [15] DONG S H, YANG Y Y, CHENG B, et al. Responses of antioxidant defenses in the clam Mactra veneriformis to 2,2',4,4'-tetrabromodiphenyl ether exposure[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology,2019,217:98-105. [16] YANG S, YAN T, WU H, et al. Acute hypoxic stress:effect on blood parameters,antioxidant enzymes, and expression of HIF-1alpha and GLUT-1 genes in largemouth bass (Micropterus salmoides)[J]. Fish & Shellfish Immunology,2017,67:449-458. [17] JIANG L X, PAN L Q, BO F. Effect of dissolved oxygen on immune parameters of the white shrimp Litopenaeus vannamei[J]. Fish & Shellfish Immunology,2005,18(2):185-188. [18] POLLOCK M S, CLARKE L M J, DUBÉ M G. The effects of hypoxia on fishes:from ecological relevance to physiological effects[J]. Environmental Reviews,2007,15:1-14. [19] LI Q, SUN S, ZHANG F, et al. Effects of hypoxia on survival, behavior, metabolism and cellular damage of Manila clam (Ruditapes philippinarum)[J]. PLoS One,2019,14(4):e0215158. [20] 马元.香港牡蛎对低氧胁迫的生理响应及转录组分析[D].钦州:北部湾大学,2022. [21] 张倩鸿,王绍军,田莹,等.溶解氧对香螺行为、抗氧化酶活性及组织结构的影响[J].大连海洋大学学报,2022,37(4):643-649. [22] 刘强,张士华,刘艳芬,等.黄河三角洲潮间带四角蛤蜊资源调查分析[J].海洋渔业,2018,40(2):163-170. [23] 左明.黄河三角洲滩涂四角蛤蜊底播增殖技术[J].水产养殖,2020,41(4):53,55. [24] 张高伟.低氧胁迫对魁蚶机体的影响及分子响应初探[D].上海:上海海洋大学,2019. [25] 夏玉莹.环境胁迫对扇贝存活、行为、代谢免疫的影响[D].上海:上海海洋大学,2021. [26] HE L, HE T, FARRAR S, et al. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species[J]. Cellular Physiology and Biochemistry:International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology,2017,44(2):532-553. [27] 吴丽娜,吴彪,刘志鸿,等.低氧预适应对魁蚶在低氧胁迫下生理生化指标的影响[J].渔业科学进展,2023,44(2):98-106. [28] 孔祥辉.缢蛏高温胁迫响应转录组分析及其相关功能基因研究[D].上海:上海海洋大学,2021. [29] 秦艺铭.毛蚶热胁迫响应的转录组学研究及SNP挖掘分析[D].天津:天津农学院,2020. [30] 王维政,曾泽乾,黄建盛,等.低氧胁迫对军曹鱼幼鱼生长、血清生化和非特异性免疫指标的影响[J].海洋学报,2021,43(2):49-58. [31] 邓高威,段健诚,王玉,等.干露胁迫对脊尾白虾存活率及氧化应激反应的影响[J].水产科学,2021,40(2):244-249. [32] 陈炼,邬婷,陈燏,等.温度对福寿螺抗氧化酶活性和丙二醛含量的影响[J].动物学杂志,2019,54(5):727-735. [33] 于晓.刺参(Apostichopus japonicus)对几种化学胁迫因子的生理生态学响应及其机制研究[D].青岛:中国海洋大学,2011. [34] ISRAELSEN W J, VANDER HEIDEN M G. Pyruvate kinase:function, regulation and role in cancer[J]. Seminars in Cell & Developmental Biology,2015,43:43-51. [35] ENRIQUETA MUÑOZ M, PONCE E. Pyruvate kinase:current status of regulatory and functional properties[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2003,135(2):197-218. [36] 魏伟.环境胁迫对文蛤摄食和代谢的影响研究[D].上海:上海海洋大学,2016. [37] 郭思鹏,汪桂玲,白志毅,等.雌性三角帆蚌外鳃组织形态周年变化及低氧胁迫对外鳃组织形态和酶活性影响[J].上海海洋大学学报,2022,31(4):865-872. [38] 谢兆文,王寿昆,林旋,等.高温胁迫对仿刺参抗氧化酶等指标的影响[J].水产科学,2016,35(4):327-333.