Growth,Antioxidant Capability, and Immunity of Blunt Snout Bream Megalobrama amblycephala Juveniles under Chronic Ammonia Nitrogen Stress
LI Mengjiao, WANG Qian, ZHANG Ting, REN Jinliang, WANG Zhiyuan, ZHAO Weilan, WANG Hengjie, WANG Canli, YUAN Xiangyang
Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
Abstract:In order to explore the effects of chronic ammonia nitrogen stress on the growth, liver antioxidant capacity and plasma immunity of blunt snout bream Megalobrama amblycephala juveniles, blunt snout bream with body weight of (30.85±1.21) g was raised in indoor culture barrels (120 cm high, 80 cm diameter) at water temperature of 22—28 ℃, and exposed to ammonium chloride concentrations of 0 (tap water, control group), and ammonium chloride of 11.09 mg/L (20% median-lethal concentration) for 56 days, based on the 96 h median-lethal concentration (LC50) of ammonia nitrogen solution on juvenile bream of 55.45 mg/L in the pre-test, with four replicates with 15 fish per replicate to evaluate the effects of ammonia nitrogen stress on growth, liver antioxidant capability and plasma immunity of juvenile blunt snout bream. The immune and antioxidant parameters were measured at the end of the feeding trial. The results showed that there were significantly higher weight gain and survival rate in control group than that of fish in stress group (P<0.05). Meanwhile, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities were found to be significantly higher in liver of fish in control group than that of fish in stress group (P<0.05), without significant effects of ammonia nitrogen stress on AST, ALT and lactate dehydrogenase (LDH) activities in plasma of fish (P>0.05) compared to the control group. Superoxide dismutase (SOD), glutathione peroxidase (GPX) and catalase (CAT) activities of fish were significantly higher in control group than those of fish in stress group (P<0.05), with decrease in malondialdehyde (MDA) level. Besides, ammonia nitrogen stress led to significantly decrease lysozyme, and acid phosphatase activities and albumin level in stress group (P<0.05) compared to the control group. In conclusion, ammonia nitrogen stress led to decrease growth, antioxidant capacity and innate immunity of the fish.
[1] 高金伟,吴浩,李绍明,等.氨氮和镉胁迫对芙蓉鲤鲫抗氧化系统和免疫机能的影响[J].水生生物学报,2022,46(4):448-456. [2] 张云龙,商泽昊,王光毅,等.氨和空气暴露对大鳞副泥鳅肝脏抗氧化能力的影响[J]. 中国水产科学,2021,28(2):176-185. [3] 吴利敏,徐瑜凤,李永婧,等.急性氨氮胁迫对淇河鲫幼鱼脑、鳃、肝、肾组织结构的影响[J].中国水产科学, 2020,27(7):789-800. [4] MCKENZIE D J, SHINGLES A, TAYLOR E W. Sub-lethal plasma ammonia accumulation and the exercise performance of salmonids[J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology,2003,135(4):515-526. [5] 郭印,戴习林.急性盐度胁迫对美洲鲥幼鱼渗透调节的影响[J].水产科学,2022,41(4):676-681. [6] CONG M, WU H F, CAO T F, et al. Effects of ammonia nitrogen on gill mitochondria in clam Ruditapes philippinarum[J]. Environmental Toxicology and Pharmacology,2019,65:46-52. [7] SITJÀ-BOBADILLA A, ALVAREZ-PELLITERO P. Experimental transmission of Sparicotyle chrysophrii (Monogenea:Polyopisthocotylea) to gilthead seabream (Sparus aurata) and histopathology of the infection[J]. Folia Parasitologica,2009,56(2):143-151. [8] SUN Y Y, YU H X, ZHANG J F, et al. Bioaccumulation, depuration and oxidative stress in fish Carassius auratus under phenanthrene exposure[J]. Chemosphere,2006,63(8):1319-1327. [9] FANTA E, RIOS F S, ROMÃO S, et al. Histopathology of the fish Corydoras paleatus contaminated with sublethal levels of organophosphorus in water and food[J]. Ecotoxicology and Environmental Safety,2003,54(2):119-130. [10] ZHANG Y L, SHANG Z H, WANG G Y, et al. High concentrations of environmental ammonia induced changes in large-scale loach (Paramisgurnus dabryanus) immunity[J]. Ecology and Evolution,2021,11(13):8614-8622. [11] 吴雪阳,郭红会,况宇,等.氨氮胁迫下不同食性鱼类仔鱼抗氧化和非特异性免疫的差异响应[J].水生生物学报,2022,46(8):1237-1248. [12] 刘可欣,林旺,罗惠敏,等.氨氮胁迫对青鲫幼鱼急性毒性和抗氧化功能的影响[J].湖南文理学院学报(自然科学版),2023,35(2):57-61. [13] JIA R, LIU B L, HAN C, et al. Effects of ammonia exposure on stress and immune response in juvenile turbot (Scophthalmus maximus)[J]. Aquaculture Research,2017,48(6):3149-3162. [14] ZHANG J F, SHEN H, WANG X R, et al. Effects of chronic exposure of 2, 4-dichlorophenol on the antioxidant system in liver of freshwater fish Carassius auratus[J]. Chemosphere,2004,55(2):167-174. [15] LU K L, WANG L N, ZHANG D D, et al. Berberine attenuates oxidative stress and hepatocytes apoptosis via protecting mitochondria in blunt snout bream Megalobrama amblycephala fed high-fat diets[J]. Fish Physiology and Biochemistry,2017,43(1):65-76. [16] SHEIKHZADEH N, TAYEFI-NASRABADI H, KHANI OUSHANI A, et al. Effects of Haematococcus pluvialis supplementation on antioxidant system and metabolism in rainbow trout (Oncorhynchus mykiss)[J]. Fish Physiology and Biochemistry,2012,38(2):413-419. [17] 蔡万存,李向飞,蒋广震,等.大米蛋白替代鱼粉对团头鲂生长、肠道消化吸收功能以及氨基酸代谢的影响[J].南京农业大学学报,2017,40(3):529-538. [18] 农业农村部渔业渔政管理局,全国水产技术推广总站,中国水产学会.2021中国渔业统计年鉴[M].北京:中国农业出版社,2021:25. [19] REITMAN S, FRANKEL S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases[J]. American Journal of Clinical Pathology, 1957,28(1):56-63. [20] LYGREN B, HAMRE K, WAAGBØ R. Effects of dietary pro- and antioxidants on some protective mechanisms and health parameters in Atlantic salmon[J]. Journal of Aquatic Animal Health,1999,11(3):211-221. [21] MARKLUND S, MARKLUND G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase[J]. European Journal of Biochemistry,1974,47(3):469-474. [22] DABAS A, NAGPURE N S, KUMAR R, et al. Assessment of tissue-specific effect of cadmium on antioxidant defense system and lipid peroxidation in freshwater murrel, Channa punctatus[J]. Fish Physiology and Biochemistry,2012,38(2):469-482. [23] PAUST L O, FOSS A, IMSLAND A K. Effects of chronic and periodic exposure to ammonia on growth, food conversion efficiency and blood physiology in juvenile Atlantic halibut (Hippoglossus hippoglossus L. )[J]. Aquaculture,2011,315(3/4):400-406. [24] PENG R B, WANG P S, LE K X, et al. Acute and chronic effects of ammonia on juvenile cuttlefish, Sepia pharaonis[J]. Journal of the World Aquaculture Society,2017,48(4):602-610. [25] 唐首杰,刘辛宇,吴太淳,等.慢性氨氮胁迫对“新吉富”罗非鱼幼鱼生长及血清生化指标的影响[J].水产科学,2019,38(6):741-748. [26] 李波,樊启学,杨凯,等.慢性氨氮胁迫对黄颡鱼摄食、生长及血液指标的影响[J].应用与环境生物学报,2011,17(6):824-828. [27] 王梦杰,马本贺,王玮欣,等.慢性氨氮胁迫对台湾泥鳅幼鱼生长、免疫及组织结构的影响[J].水生生物学报,2021,45(2):267-274. [28] CAI L S, WANG L, SONG K, et al. Evaluation of protein requirement of spotted seabass (Lateolabrax maculatus) under two temperatures, and the liver transcriptome response to thermal stress[J]. Aquaculture,2020,516:734615. [29] KIM W R, FLAMM S L, DI BISCEGLIE A M, et al. Serum activity of alanine aminotransferase (ALT) as an indicator of health and disease[J]. Hepatology,2008,47(4):1363-1370. [30] RAHIMNEJAD S, YUAN X Y, LIU W B, et al. Evaluation of antioxidant capacity and immunomodulatory effects of yeast hydrolysates for hepatocytes of blunt snout bream (Megalobrama amblycephala)[J]. Fish & Shellfish Immunology,2020,106:142-148. [31] YUAN X Y, LIU W B, WANG C C, et al. Evaluation of antioxidant capacity and immunomodulatory effects of cottonseed meal protein hydrolysate and its derivative peptides for hepatocytes of blunt snout bream (Megalobrama amblycephala)[J]. Fish & Shellfish Immunology,2020,98:10-18. [32] 徐杨,肖炜,李大宇,等.慢性氨氮胁迫对尼罗罗非鱼幼鱼生长及生理功能的影响[J].南方农业学报,2015,46(2):327-331. [33] 黎庆,龚诗雁,黎明.慢性氨氮暴露诱发黄颡鱼幼鱼谷氨酰胺积累、氧化损伤及免疫抑制的研究[J].水产学报,2015,39(5):728-734. [34] SUN H J, LÜ K, MINTER E J A, et al. Combined effects of ammonia and microcystin on survival, growth, antioxidant responses, and lipid peroxidation of bighead carp Hypophthalmythys nobilis larvae[J]. Journal of Hazardous Materials,2012,221/222:213-219. [35] YUAN X Y, JIANG G Z, CHENG H H, et al. An evaluation of replacing fish meal with cottonseed meal protein hydrolysate in diet for juvenile blunt snout bream (Megalobrama amblycephala):growth, antioxidant, innate immunity and disease resistance[J]. Aquaculture Nutrition,2019,25(6):1334-1344. [36] YUAN X Y, JIANG G Z, WANG C C, et al. Effects of partial replacement of fish meal by yeast hydrolysate on antioxidant capability, intestinal morphology, and inflammation-related gene expression of juvenile Jian carp (Cyprinus carpio var. Jian)[J]. Fish Physiology and Biochemistry,2019,45(1):187-197. [37] QIN C J, SHAO T, WANG Y M, et al. Effect of ammonia-N on histology and expression of immunoglobulin M and component C3 in the spleen and head kidney of Pelteobagrus vachellii[J]. Aquaculture Reports,2017,8:16-20. [38] 芦光宇,刘国兴,李佳佳,等.氨氮对克氏原螯虾抗氧化功能的影响[J].江西农业学报,2014,26(2):129-133. [39] 韩春艳,郑清梅,陈桂丹,等.氨氮胁迫对奥尼罗非鱼非特异性免疫的影响[J].南方水产科学,2014,10(3):47-52. [40] 王娜,邵晨,颉志刚,等.低温胁迫下虎纹蛙的生存力及免疫和抗氧化能力[J].生态学报,2012,32(11):3538-3545.