|
|
水产生态容量及在淡水增养殖上的应用研究进展 |
韩毓, 张杭君 |
杭州师范大学 生命与环境科学学院,浙江 杭州 311121 |
|
Advance in Research on Ecological Carrying Capacity of Freshwater Fisheries: a Review |
HAN Yu, ZHANG Hangjun |
College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China |
[1] Food and Agriculture Organization of the United Nations. The State of World Fisheries and Aquaculture [R]. Rome: FAO, 2021:17-32 [2] 农业农村部渔业渔政管理局.2020年全国渔业经济统计公报[J].中国水产,2021(8):11-12. [3] 杨晓岩,李天保,王远隆,等.山东沿海栉孔扇贝大量死亡原因初探[J].齐鲁渔业,1998,15(6):17-19. [4] 杨雯雯,余明海.广东草鱼养殖调查:养殖密度加大 病害肆虐[J].当代水产,2012,37(7):26-27. [5] 夏美.鲟鱼人工养殖病害发生的原因及防控对策[J].现代农业研究,2018(2):46-47. [6] 段云岭,马金林,王晓奕,等.针对淡水养殖排放水体污染的防治方法研究[J].华北水利水电大学学报(自然科学版),2019,40(2):42-45. [7] 高立方,吴静颖,葛小东,等.长江经济带淡水养殖污染负荷特征分析[J].华中农业大学学报,2021,40(3):64-74. [8] 生态环境部. 2021年中国生态环境状况公报[R].北京:中华人民共和国生态环境部,2022:17-29. [9] 刘慧,蔡碧莹.水产养殖容量研究进展及应用[J].渔业科学进展,2018,39(3):158-166. [10] 刘梅,原居林,倪蒙,等.基于系统动力学模型的淡水渔业捕捞时间和喂养策略的优化分析[J].江苏农业科学,2020,48(2):164-170. [11] 边蔚,胡晓波,田在锋,等.白洋淀水产养殖容量研究[J].河北大学学报(自然科学版),2011,31(1):79-84. [12] CHAPMAN E J, BYRON C J. The flexible application of carrying capacity in ecology[J]. Global Ecology and Conservation,2018,13:e00365. [13] SAYRE N F. The genesis, history, and limits of carrying capacity[J]. Annals of the Association of American Geographers,2008,98(1):120-134. [14] YASHOUV A. Increasing fish production in ponds[J]. Transactions of the American Fisheries Society,1963,92(3):292-297. [15] INCZE L S, LUTZ R A, TRUE E. Modeling carrying capacities for bivalve molluscs in open, suspended-culture systems[J]. Journal of the World Mariculture Society,1981,12(1):141-155. [16] INGLIS G, HAYDEN B J, ROSS A. An Overview of Factors Affecting the Carrying Capacity of Coastal Embayments for Mussel Culture[R].New Zealand:National Institute of Water & Atmospheric Research,2002:14-28. [17] MCKINDSEY C W, THETMEYER H, LANDRY T, et al. Review of recent carrying capacity models for bivalve culture and recommendations for research and management[J]. Aquaculture,2006,261(2):451-462. [18] ROSS L G, TELFER T C, FALCONER L, et al. Carrying capacities and site selection within the ecosystem approach to aquaculture[M]//ROSS L TELFER T,FALCONER L,et al. Site Selection and Carrying Capacities for Inland and Coastal Aquaculture. Rome:FAO,2013:19-40. [19] 崔彦萍,王保栋,陈求稳.三峡正常蓄水后长江口叶绿素a和溶解氧变化及其成因[J].生态学报,2014,34(21):6309-6316. [20] TEIXEIRA Z, MARQUES C, MOTA J S, et al. Identification of potential aquaculture sites in solar saltscapes via the Analytic Hierarchy Process[J]. Ecological Indicators,2018,93:231-242. [21] MCKINDSEY C W. Carrying capacity for sustainable bivalve aquaculture[M]//CHRISTOU P, SAVIN R, COSTA-PIERCE B A,et al. Sustainable Food Production. New York:Springer,2013:449-466. [22] DALTON T, JIN D, THOMPSON R, et al. Using normative evaluations to plan for and manage shellfish aquaculture development in Rhode Island coastal waters[J]. Marine Policy,2017,83:194-203. [23] 兰艳,俞锦辰,刘怡琳,等.基于氮磷负荷的淡水池塘河蟹养殖容量估算[J].上海海洋大学学报,2021,30(3):492-500. [24] 徐汉祥,王伟定,刘士忠,等.舟山深水网箱拟养海区环境本底状况及养殖容量[J].现代渔业信息,2005,20(1):8-11. [25] 张继红,吴文广,徐东,等.虾夷扇贝动态能量收支模型参数的测定[J].水产学报,2016,40(5):703-710. [26] SMAAL A C, VAN DUREN L A. Bivalve aquaculture carrying capacity:concepts and assessment tools[M]// SMALL A C, FERREIRA J G, GRANT J, et al. Goods and Services of Marine Bivalves. Cham:Springer International Publishing,2018:451-483. [27] 张幼敏.中国湖泊、水库水产增养殖技术的进展[J].水产学报,1992,16(2):179-187. [28] 罗雁婕.我国水库渔业发展现状及生态渔业发展思路[J].乡村科技,2020(13):36-37. [29] HÉRAL M, DESLOUS-PAOLI J, PROU J. Dynamiques des productions et des biomasses des huîtres creuses cultivées (Crassostrea angulata et Crassostrea gigas) dans le bassin de marennes-oléron depuis un siècle[C]. Copenhagen:CIEM Conseil International Pour,1986:12-17. [30] 刘剑昭,李德尚,董双林,等.养虾池半精养封闭式综合养殖的养殖容量实验研究[J].海洋科学,2000,24(7):6-11. [31] PEARL R, REED L J. On the rate of growth of the population of the United States since 1790 and its mathematical representation[J]. Proceedings of the National Academy of Sciences of the United States of America,1920,6(6):275-288. [32] LOTKA A J. Elements of physical biology[J]. Nature,1925,116(2917):461. [33] HEPHER B, PRUGININ Y. Commercial fish farming:with special reference to fish culture in Israel[M]. New York:John wiley & Sons, Inc.,1981:216. [34] OFFICER C B, SMAYDA T J, MANN R. Benthic filter feeding:a natural eutrophication control[J]. Marine Ecology Progress Series,1982,9:203-210. [35] LAHAM M F, KRISHNARAJAH I S, SHARIFF J M. Fish harvesting management strategies using logistic growth model[J]. Sains Malaysiana,2012,41(2):171-177. [36] MURRAY A G, MUNRO L A. The growth of Scottish salmon (Salmo salar) aquaculture 1979—2016 fits a simple two-phase logistic population model[J]. Aquaculture,2018,496:146-152. [37] KOOIJMAN S AL M. Energy budgets can explain body size relations[J]. Journal of Theoretical Biology,1986,121(3):269-282. [38] KOOIJMAN S A L M. Evolution[M]//KOOIJMAN S A L M. Dynamic Energy Budget Theory for Metabolic Organisation. Cambridge:Cambridge University Press,2009:384-429. [39] POUVREAU S, BOURLES Y, LEFEBVRE S, et al. Application of a dynamic energy budget model to the Pacific oyster, Crassostrea gigas, reared under various environmental conditions[J]. Journal of Sea Research,2006,56(2):156-167. [40] LAVAUD R, LA PEYRE M K, JUSTIC D, et al. Dynamic energy budget modelling to predict eastern oyster growth, reproduction, and mortality under river management and climate change scenarios[J]. Estuarine, Coastal and Shelf Science,2021,251:107188. [41] FILGUEIRA R, GUYONDET T, COMEAU L A, et al. A fully-spatial ecosystem-DEB model of oyster (Crassostrea virginica) carrying capacity in the Richibucto Estuary, Eastern Canada[J]. Journal of Marine Systems,2014,136:42-54. [42] 张虎,张俊波,杨晨星,等. 文蛤动态能量收支模型构建、验证与应用[J]. 水产学报,2022,46(6):1036-1044. [43] 刘洋,朱建新,陈小傲,等.凡纳滨对虾动态能量收支模型参数的测定[J].渔业科学进展,2022,43(2):167-174. [44] FUENTES-SANTOS I, LABARTA U, ÁLVAREZ-SALGADO X. Modelling mussel shell and flesh growth using a dynamic net production approach[J]. Aquaculture,2019,506:84-93. [45] REN J S, JIN X S, YANG T, et al. A dynamic energy budget model for small yellow croaker Larimichthys polyactis:parameterisation and application in its main geographic distribution waters[J]. Ecological Modelling,2020,427:109051. [46] 朱永锋,谭路,蔡庆华,等.基于高频溶氧的浮游植物初级生产力季节变化及驱动因子——以神农南坡香溪河库湾为例[J].长江流域资源与环境,2021,30(6):1472-1479. [47] 贺蓉,蒋礼,郑曙明,等.三峡库区甘井河水域牧场浮游植物群落结构及水质评价[J].水生生物学报,2015,39(5):902-909. [48] 王毅波,孙延瑜,王彩霞,等.夏季渤海网采浮游植物群落和叶绿素a分布特征及其对渔业资源的影响[J].渔业科学进展,2019,40(5):42-51. [49] PARSONS T R, TAKAHASHI M, HARGRAVE B. Biological Oceanographic Processes[M]. Oxford:pergamon press,1973:186-247. [50] 周立红,卢亚芳,黄世玉,等.杏林湾水库养殖容量的研究[J].福建师范大学学报(自然科学版),2007,23(3):53-57. [51] 张琪,陈磊,潘婷婷,等.三峡水库香溪河库湾基于初级生产力的渔产潜力估算[J].水生生物学报,2015,39(5):948-953. [52] 李德尚.水库对投饵网箱养鱼负荷力的研究方法[J].水利渔业,1992(3):3-5. [53] 汪晓妍,周婷,应紫敏,等.宁德水产养殖区水质状况及驱动力分析[J].生态学报,2020,40(5):1766-1778. [54] DILLON P J, RIGLER F H. A test of a simple nutrient budget model predicting the phosphorus concentration in lake water[J]. Journal of the Fisheries Research Board of Canada,1974,31(11):1771-1778. [55] VOLLENWEIDER R. Advances in defining critical loading levels for phosphorus in lake eutrophication[J]. Memorie IstitutoIdrobiologia,1976,33:53-83.. [56] 谢巧雄,姚俊杰,周路,等.龙滩水库八达村库湾水质变化及网箱养鱼容纳量[J].贵州农业科学,2014,42(1):159-162. [57] 金刚,李钟杰,谢平.草型湖泊河蟹养殖容量初探[J].水生生物学报,2003,27(4):345-351. [58] 刘学海,袁业立.海洋环境动力学物理模拟的尺度分析及相似条件[J].海洋科学进展,2006,24(3):285-291. [59] WEITZMAN J, FILGUEIRA R. The evolution and application of carrying capacity in aquaculture:towards a research agenda[J]. Reviews in Aquaculture,2020,12(3):1297-1322. [60] 戴媛媛,吴会民,张韦,等.基于Ecopath模型的我国海洋渔业生态系统研究概况[J].海洋湖沼通报,2020(6):150-157. [61] CROMEY C J, NICKELL T D, BLACK K D. DEPOMOD-modelling the deposition and biological effects of waste solids from marine cage farms[J]. Aquaculture,2002,214(1/2/3/4):211-239. [62] KEELEY N B, CROMEY C J, GOODWIN E O, et al. Predictive depositional modelling (DEPOMOD) of the interactive effect of current flow and resuspension on ecological impacts beneath salmon farms[J]. Aquaculture Environment Interactions,2013,3(3):275-291. [63] WEISE A M, CROMEY C J, CALLIER M D, et al. Shellfish-DEPOMOD:modelling the biodeposition from suspended shellfish aquaculture and assessing benthic effects[J]. Aquaculture,2009,288(3/4):239-253. [64] MCKINDSEY C W, LECUONA M, HUOT M, et al. Biodeposit production and benthic loading by farmed mussels and associated tunicate epifauna in Prince Edward Island[J]. Aquaculture,2009,295(1/2):44-51. [65] 黄梦仪,徐姗楠,刘永,等.基于Ecopath模型的大亚湾黑鲷生态容量评估[J].中国水产科学,2019,26(1):1-13. [66] 汪倩,胡庚东,宋超,等.基于Ecopath评估蟹-稻复合生态系统营养结构和能量流动[J].生态学报,2020,40(14):4852-4862. [67] 陈泽豪,王颖,王乔,等.基于习性和食物网的白洋淀大型底栖动物群落恢复研究[J].生态毒理学报,2021,16(5):136-147. [68] 赵旭昊,徐东坡,任泷,等.基于Ecopath模型的太湖鲢鳙生态容量评估[J].中国水产科学,2021,28(6):785-795. [69] POLOVINA J. An overview of the ecopath model[J]. Fishbyte,1984,2(2):5-7. [70] WALTERS C, CHRISTENSEN V, PAULY D. Structuring dynamic models of exploited ecosystems from trophic mass-balance assessments[J]. Reviews in Fish Biology and Fisheries,1997,7(2):139-172. [71] WALTERS C, PAULY D, CHRISTENSEN V. Ecospace:prediction of mesoscale spatial patterns in trophic relationships of exploited ecosystems, with emphasis on the impacts of marine protected areas[J]. Ecosystems,1999,2(6):539-554. [72] CHRISTENSEN V, WALTERS C J. Ecopath with Ecosim:methods, capabilities and limitations[J]. Ecological Modelling,2004,172(2/3/4):109-139. [73] 丁娜.阳澄西湖水环境及其养殖容量的研究[D].南京:南京农业大学,2015. [74] GRANT J, FILGUEIRA R. The application of dynamic modeling to prediction of production carrying capacity in shellfish farming[J]. Shellfish Aquaculture and the Environment,2011:135-154. [75] CHAMBERLAIN J, STUCCHI D, LU L, et al. The suitability of DEPOMOD for use in the management of finfish aquaculture sites, with particular reference to Pacific Region[J]. Fisheries & Oceans Canada, Science, Canadian Science Advisory Secretariat, 2005: 26-51. [76] VILLASANTE S, ARREGUÍN-SÁNCHEZ F, HEYMANS J J, et al. Modelling marine ecosystems using the Ecopath with Ecosim food web approach:new insights to address complex dynamics after 30 years of developments[J]. Ecological Modelling,2016,331:1-4. [77] 王明华,姜虎成,陈校辉,等.斑点叉尾鮰几种健康养殖模式总结[J].水产养殖,2020,41(8):61-63. [78] PETTER G, WEITERE M, RICHTER O, et al. Consequences of altered temperature and food conditions for individuals and populations:a dynamic energy Budget analysis for Corbicula fluminea in the Rhine[J]. Freshwater Biology,2014,59(4):832-846. [79] 刘梅,原居林,倪蒙,等.基于环境容纳量的区域性养殖容量评估[J].水生态学杂志,2019,40(2):27-34. [80] 刘梅,倪蒙,练青平,等.浙江省湖州地区养殖容量模型的构建及评估研究[J].环境科学与管理,2020,45(11):159-163. [81] 简生龙,关弘弢,李柯懋,等.青海黄河龙羊峡-积石峡段水库鲑鳟鱼网箱养殖容量估算[J].河北渔业,2019(6):22-27. [82] 贾佩峤,胡忠军,武震,等.基于Ecopath模型对滆湖生态系统结构与功能的定量分析[J].长江流域资源与环境,2013,22(2):189-197. [83] 李云凯,刘恩生,王辉,等.基于Ecopath模型的太湖生态系统结构与功能分析[J].应用生态学报,2014,25(7):2033-2040. [84] 刘恩生,李云凯,臧日伟,等.基于Ecopath模型的巢湖生态系统结构与功能初步分析[J].水产学报,2014,38(3):417-425. [85] 郭思雅,王京刚,王颖,等.基于Ecopath模型的白洋淀生态系统近10年结构与功能变化分析[J].生态毒理学报,2020,15(5):169-180. [86] 王殿常,吴兴华,丁玲,等.基于Ecopath模型的长江口生态系统结构与功能分析[J].环境工程技术学报,2022,12(2):417-425. [87] 刘岩,吴忠鑫,杨长平,等.基于Ecopath模型的珠江口6种增殖放流种类生态容纳量估算[J].南方水产科学,2019,15(4):19-28. [88] 中华人民共和国农业农村部.大水面增养殖容量计算方法:SC/T 1149—2020[S].北京:中国农业出版社,2020. [89] 山东水产学会. 海水鱼类网箱养殖和贝类养殖容量评估技术规程:T/SDCJ 1—2018[S].青岛:山东水产学会,2018. [90] ZHANG W B, BELTON B, EDWARDS P, et al. Aquaculture will continue to depend more on land than sea[J]. Nature,2022,603(7900):E2-E4. |
[1] |
刘学海,王宗灵,张明亮,王波,孙丕喜. 基于生态模型估算胶州湾菲律宾蛤仔养殖容量[J]. , 2015, 34(12): 733-740. |
[2] |
宋广军,张雪,宋伦,王年斌,李爱. 鸭绿江口浅海海域菲律宾蛤仔养殖容量估算[J]. , 2013, 32(1): 36-40. |
[3] |
印丽云,杨振才,喻子牛,李玉娟,吴宁燕,李丹,李培华. 海水贝类养殖中的问题及对策[J]. , 2012, 31(5): 302-305. |
[4] |
郭芳,黄小平. 海水网箱养殖对近岸环境影响的研究进展[J]. , 2006, 25(1): 37-41. |
[5] |
李文姬,薛真福. 持续发展虾夷扇贝的健康增养殖[J]. , 2005, 24(9): 49-51. |
|
|
|
|