Optimization of Purification Process of Saponins from Sea Cucumber Apostichopus japonicus with Macroporous Resin by Response Surface Methodology
LIU Yujun1, LIU Guiying1, YU Di1,2, LI Long1, FU Zhiyu1,2, ZHENG Jie1,2, LIU Yutong3, ZHOU Zunchun1,2
1. Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China; 2. Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Dalian 116023, China; 3. College of Chemistry, Liaoning University, Shenyang 110036, China
Abstract:In order to optimize the optimum process conditions for purifying saponin Holotoxin A1 (HA1) by macroporous resin, four different structural macroporous resins (AB-8, HP-20, D101 and NKA-9) commonly used for purification of saponins in sea cucumber Apostichopus japonicus were selected. The content of HA1 was determined by high performance liquid chromatography (HPLC) using sea cucumber saponin HA1 as a standard. By comparing their static adsorption-desorption capacity and static adsorption curves, the suitable resin type was selected. The crude saponin mass concentration, ethanol volume fraction and ethanol washing volume were used as factors to determine the optimal dynamic purification process conditions based on the single factor experiments and Box-Behnken response surface experiment. The results showed that AB-8 resin had the best purification effect on HA1, and the optimal purification process was as follows: crude saponin mass concentration of 25 mg/mL, flow rate 1 mL/min, sample loading volume 25 mL, washing volume 2 times column volume (BV), ethanol volume fraction 73%, and ethanol washing volume 7 BV. Under these conditions, the recovery rate of HA1 was 91.40%, and the purity was increased from 0.16% to 0.58%. The purification process obtained in this study is suitable for the purification of saponin HA1 in Apostichopus japonicus.
刘煜珺, 刘桂英, 于笛, 李龙, 傅志宇, 郑杰, 刘俣彤, 周遵春. 响应面法优化大孔树脂纯化仿刺参中皂苷工艺研究[J]. 水产科学, 2024, 43(5): 727-736.
LIU Yujun, LIU Guiying, YU Di, LI Long, FU Zhiyu, ZHENG Jie, LIU Yutong, ZHOU Zunchun. Optimization of Purification Process of Saponins from Sea Cucumber Apostichopus japonicus with Macroporous Resin by Response Surface Methodology. Fisheries Science, 2024, 43(5): 727-736.
[1] GUAN R W, PENG Y, ZHOU L T, et al. Precise structure and anticoagulant activity of fucosylated glycosaminoglycan from Apostichopus japonicus:analysis of its depolymerized fragments[J]. Marine Drugs,2019,17(4):195. [2] ZHAO Y C, XUE C H, ZHANG T T, et al. Saponins from sea cucumber and their biological activities[J]. Journal of Agricultural and Food Chemistry,2018,66(28):7222-7237. [3] DAI Y L, KIM E A, LUO H M, et al. Characterization and anti-tumor activity of saponin-rich fractions of South Korean sea cucumbers (Apostichopus japonicus)[J]. Journal of Food Science and Technology,2020,57(6):2283-2292. [4] SIAHAAN E, PANGESTUTI R, MUNANDAR H, et al. Cosmeceuticals properties of sea cucumbers:prospects and trends[J]. Cosmetics,2017,4(3):26. [5] 张然,王远红,刘玉锋,等.仿刺参中海参皂苷HolotoxinA1的分离制备及其含量的分析[J].中国海洋药物,2013,32(4):8-14. [6] MALYARENKO O S, IVANUSHKO L A, CHAIKINA E L, et al. In vitro and in vivo effects of holotoxin A1 from the sea cucumber Apostichopus japonicus during ionizing radiation[J]. Natural Product Communications,2020,15(6):1934578X2093203. [7] 刘桂英,王旭达,葛坤,等.响应面法优化提取仿刺参中海参皂苷工艺[J].水产科学,2021,40(6):810-817. [8] 钟静诗,张健,王共明,等.海参皂苷的制备及结构解析研究进展[J].海洋科学,2022,46(4):133-142. [9] 井君.七种美洲海参品质特性及其主要化学成分的研究[D].上海:上海海洋大学,2018. [10] DONG P, XUE C H, YU L F, et al. Determination of triterpene glycosides in sea cucumber (Stichopus japonicus) and its related products by high-performance liquid chromatography[J]. Journal of Agricultural and Food Chemistry,2008,56(13):4937-4942. [11] DONG Y, ZHAO M M, SUN-WATERHOUSE D, et al. Absorption and desorption behaviour of the flavonoids from Glycyrrhiza glabra L. leaf on macroporous adsorption resins[J]. Food Chemistry,2015,168:538-545. [12] 刘桂英,刘煜珺,张瑜洋,等.海参皂苷分离纯化、结构分析及活性的研究进展[J].水产科学,2023,42(1):147-156. [13] XIA Y, WANG C W, YU D J, et al. Methods of simultaneous preparation of various active substances from Stichopus chloronotus and functional evaluation of active substances[J]. Food and Agricultural Immunology,2022,33(1):563-574. [14] WEN L, LI R, ZHAO Y C, et al. A comparative study of the anti-obesity effects of dietary sea cucumber saponins and energy restriction in response to weight loss and weight regain in mice[J]. Marine Drugs,2022,20(10):629. [15] 殷廷.海参水煮液成分的鉴定、活性与制备工艺研究[D].大连:大连工业大学,2015. [16] HAN Q, LI K F, DONG X P, et al. Function of Thelenota ananas saponin desulfated holothurin A in modulating cholesterol metabolism[J]. Scientific Reports,2018,8:9506. [17] 陆慧玲,邹苏兰,郭志华,等.失效模式分析结合Box-Behnken优化大孔吸附树脂分离纯化益心泰总皂苷工艺[J].中国新药杂志,2023,32(1):57-64. [18] 李鑫佳.低值智利海参的皂苷制备与活性研究[D].烟台:烟台大学,2020. [19] KHATTAB R A, ELBANDY M, LAWRENCE A, et al. Extraction, identification and biological activities of saponins in sea cucumber Pearsonothuria graeffei[J]. Combinatorial Chemistry & High Throughput Screening,2018,21(3):222-231. [20] 刘瑞,张弘弛,延文星,等.XDA-4型大孔树脂对黄芪总皂苷富集工艺的优选[J].食品研究与开发,2020,41(23):92-98. [21] 王春怡,李卫民,高英.大孔吸附树脂精制黄芪总皂苷工艺研究[J].辽宁中医药大学学报,2017,19(9):44-47. [22] 黎叶凡,朱华旭,唐志书,等.膜分离技术与传统工艺联合对山茱萸皂苷的分离纯化[J].中南药学,2022,20(2):254-261. [23] 胡玉飘.熟三七皂苷类成分提取纯化工艺优化及其生物活性研究[D].昆明:昆明理工大学,2019. [24] 尹丽,王华坤,蒋德旗,等.大孔吸附树脂纯化九节总黄酮工艺的研究[J].饲料研究,2023,46(5):70-75. [25] 胡迎丽,夏璐,雷福厚.大孔吸附树脂在天然产物的分离纯化中的应用进展[J].化工技术与开发,2021,50(11):29-34. [26] 何春喜,余泽义,何毓敏,等.竹节参总皂苷的大孔吸附树脂纯化与离子交换树脂脱色工艺研究[J].中草药,2017,48(6):1146-1152. [27] 胡迎丽,黄金福,杨建林,等.松香基大孔吸附树脂对三七总皂苷的吸附特性研究[J].食品工业科技,2022,43(4):73-81. [28] TASFIYATI A N, PRASETIA H, MUZDALIFAH D, et al. Optimization of evaporative light scattering detector using response surface methodology for liquid chromatography analysis of frondoside A [J]. ChemistrySelect,2022,7(36):e202202021. [29] DAHMOUNE B, HOUMA-BACHARI F, CHIBANE M, et al. Microwave assisted extraction of bioactive saponins from the starfish Echinaster sepositus:optimization by response surface methodology and comparison with ultrasound and conventional solvent extraction[J]. Chemical Engineering and Processing-Process Intensification,2021,163:108359. [30] 张沛,吴楠,宋志军,等.响应面法优化大孔树脂纯化黄芪毛蕊异黄酮工艺[J].食品工业科技,2021,42(10):209-214. [31] 刘冲英,周宁,崔涛,等.响应面法优化大孔树脂纯化地黄多糖工艺[J].食品工业科技,2021,42(6):202-207. [32] 于林芳,王超,王玉明,等.大孔树脂纯化革皮氏海参总皂苷工艺[J].食品科学,2011,32(12):1-4. [33] ALMEIDA BEZERRA M, SANTELLI R E, OLIVEIRA E P, et al. Response surface methodology (RSM) as a tool for optimization in analytical chemistry[J]. Talanta,2008,76(5):965-977. [34] 邹苏兰,李雅,李姿锐,等.大孔吸附树脂分离纯化益心泰总黄酮工艺的优化[J].中成药,2022,44(8):2624-2629. [35] 王丹丹,刘芫汐,左甜甜,等.大孔吸附树脂及其在中药领域应用研究进展[J].中国药事,2022,36(7):826-835. [36] 阮伟达,刘秋凤,苏永昌.大孔吸附树脂纯化海地瓜总皂苷的研究[J].渔业研究,2017,39(5):357-364.