1. School of Life Sciences, Huzhou Normal University, Huzhou 313000, China; 2. Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200092, China
Abstract:In order to evaluate the inhibitory effect of EM bacteria on cyanobacteria, EM bacteria including Lactobacillus plantarum, Acetobacter tropicalis, and Bacillus velezensis solution with total density of viable bacteria of 1×108 cfu/L were added to the cyanobacteria including Microcystis(content>95%), Anabaena, Oscillatoria and Spirulina solution at a dose of 0%(control group), 0.40%, 0.80%, 1.60% and 3.20% (volume fraction), and the concentrations of dissolved total nitrogen, dissolved total phosphorus, and dissolved organic carbon, pH, cyanobacteria density and total chlorophyll a level in the solution were determined at different culture periods. The results showed that adding 0.80%, 1.60% and 3.20% EM bacterial solution led to significantly reduce the concentration of total dissolved nitrogen in solution (P<0.05). The concentration of dissolved total phosphorus in the solution was shown to be significantly decreased by adding 3.20% of EM bacterial solution in the first 3 days (P<0.05), with little effect on the concentration of dissolved organic carbon in the final solution. There was stable pH in the solution containing EM bacteria. EM liquid was found to be significant inhibitory effect on cyanobacteria (P<0.01), with inhibitory rate of up to 90.00%, and the order of inhibitory effect as 0.80%>3.20%>1.60%>0.40%. The concentration of total chlorophyll a in solution was decreased by adding EM bacterial solution, with the descending order effects of inhibitory effect were as 0.80%>1.60%>0.40%>3.20%, 0.80% and significant effects on the concentration of total chlorophyll a in solution in 1.60% of EM bacterial solution (P<0.05).In summary, the best effect on inhibiting cyanobacteria and reducing total chlorophyll a was observed in 0.80% EM bacterial solution which was used to control cyanobacteria bloom in natural water or aquaculture water. The finding provides reference for controlling cyanobacteria bloom outbreak and regulating algal phase structure in aquaculture water.
[1] 胡鸿钧.水华蓝藻生物学[M].北京:科学出版社,2011. [2] HARKE M J, BERRY D L, AMMERMAN J W, et al. Molecular response of the bloom-forming cyanobacterium, Microcystis aeruginosa, to phosphorus limitation[J]. Microbial Ecology,2012,63(1):188-198. [3] PAERL H W, HUISMAN J. Blooms like it hot[J]. Science,2008,320(5872):57-58. [4] DE FIGUEIREDO D R, AZEITEIRO U M, ESTEVES S M, et al. Microcystin-producing blooms—a serious global public health issue[J]. Ecotoxicology and Environmental Safety,2004,59(2):151-163. [5] 王敏.微囊藻产毒种群生长和毒素合成的生态生理学研究[D].合肥:中国科学技术大学,2018. [6] KRZTON' W, KOSIBA J, POCIECHA A, et al. The effect of cyanobacterial blooms on bio- and functional diversity of zooplankton communities[J]. Biodiversity and Conservation,2019,28(7):1815-1835. [7] 李俊楠.低温等离子体对蓝藻抑制效应与机理研究[D].北京:中国环境科学研究院,2021. [8] KRZTONN' W, KOSIBA J. Variations in zooplankton functional groups density in freshwater ecosystems exposed to cyanobacterial blooms[J]. The Science of the Total Environment,2020,730:139044. [9] 徐梦娇,董为贞,张真,等.南江水库蓝藻水华应急处置前后浮游植物群落结构及环境因子变化[J].上海海洋大学学报,2022,31(6):1467-1477. [10] 李建松,王广军,龚望宝,等.蓝藻水华发生过程中细菌群落结构的动态变化[J].中国农业大学学报,2017,22(7):134-142. [11] 李媛,张家卫,魏杰,等.我国蓝藻水华的发生机理、危害及防控利用研究进展[J].微生物学杂志,2015,35(4):93-97. [12] HUISMAN J, CODD G A, PAERL H W, et al. Cyanobacterial blooms[J]. Nature Reviews. Microbiology,2018,16(8):471-483. [13] PAERL H W. Controlling cyanobacterial harmful blooms in freshwater ecosystems[J]. Microbial Biotechnology,2017,10(5):1106-1110. [14] 宋超,孟顺龙,范立民,等.中国淡水池塘养殖面临的环境问题及对策[J].中国农学通报,2012,28(26):89-92. [15] 过龙根.除藻与控藻技术[J].中国水利,2006(17):34-36. [16] WANG Y Y, HE Q, TANG H, et al. Two-year moving aeration controls cyanobacterial blooms in an extremely eutrophic shallow pond:variation in phytoplankton community and Microcystis colony size[J]. Journal of Water Process Engineering,2021,42:102192. [17] RAJASEKHAR P, FAN L H, NGUYEN T, et al. A review of the use of sonication to control cyanobacterial blooms[J]. Water Research,2012,46(14):4319-4329. [18] MATTHIJS H C P, JANČULA D, VISSER P M, et al. Existing and emerging cyanocidal compounds:new perspectives for cyanobacterial bloom mitigation[J]. Aquatic Ecology,2016,50(3):443-460. [19] 陈超,范帆,史小丽,等.化学氧化剂对水华蓝藻的控制研究[J].中国环境科学,2018,38(11):4307-4313. [20] TRIEST L, STIERS I, VAN ONSEM S. Biomanipulation as a nature-based solution to reduce cyanobacterial blooms[J]. Aquatic Ecology,2016,50(3):461-483. [21] 刘建康,谢平.用鲢鳙直接控制微囊藻水华的围隔试验和湖泊实践[J].生态科学,2003,22(3):193-198. [22] 陈莉婷,左俊,陶思依,等.利用微生物控制蓝藻研究进展[J].武汉大学学报(理学版),2019,65(4):401-410. [23] SUN R, SUN P F, ZHANG J H, et al. Microorganisms-based methods for harmful algal blooms control:a review[J]. Bioresource Technology,2018,248(Pt B):12-20. [24] 方雨博,王趁义,汤唯唯,等.除藻技术的优缺点比较、应用现状与新技术进展[J].工业水处理,2020,40(9):1-6. [25] ZHOU Q L, LI K M, JUN X, et al. Role and functions of beneficial microorganisms in sustainable aquaculture[J]. Bioresource Technology,2009,100(16):3780-3786. [26] 贺嘉怡.藻菌共培养提高绿藻产氢效率的研究[D].东营:中国石油大学(华东),2018. [27] 吴珊.水产养殖池塘蓝藻水华的生物防治[D].扬州:扬州大学,2016. [28] SHARIP Z, ABD RAZAK S B, NOORDIN N, et al. Application of an effective microorganism product as a cyanobacterial control and water quality improvement measure in Putrajaya Lake, Malaysia[J]. Earth Systems and Environment,2020,4(1):213-223. [29] 陈宇炜,陈开宁,胡耀辉.浮游植物叶绿素a测定的“热乙醇法” 及其测定误差的探讨[J].湖泊科学,2006,18(5):550-552. [30] 国家环境保护总局《水和废水监测分析方法》编委会. 水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002. [31] 赵华,张先智,肖娴.氮磷营养盐控制与湖泊蓝藻水华治理研究进展[J].环境科学导刊,2021,40(3):12-15. [32] GLIBERT P M. Eutrophication, harmful algae and biodiversity-challenging paradigms in a world of complex nutrient changes[J]. Marine Pollution Bulletin,2017,124(2):591-606. [33] 邹万生,张景来,刘良国,等.有效微生物菌与水生植物联合净化珍珠蚌养殖废水[J].环境工程学报,2012,6(6):1773-1779. [34] 陈伟民,蔡后建.微生物对太湖微囊藻的好氧降解研究[J].湖泊科学,1996,8(3):248-252. [35] PAERL H W. Transfer of N2 and CO2 fixation products from Anabaena oscillarioides to associated bacteria during inorganic carbon sufficiency and deficiency[J]. Journal of Phycology,1984,20(4):600-608. [36] BRAUER V S, STOMP M, BOUVIER T, et al. Competition and facilitation between the marine nitrogen-fixing cyanobacterium Cyanothece and its associated bacterial community[J]. Frontiers in Microbiology,2015,5:795. [37] 闫法军,张婧一,刘峰,等.草鱼池塘水体细菌群落对蓝藻源DOM的降解及其碳代谢特征变化[J].环境科学学报,2021,41(8):3279-3289. [38] SMITH V H, BENNETT S J. Nitrogen:phosphorus supply ratios and phytoplankton community structure in lakes[J]. Fundamental and Applied Limnology, 1999,146(1):37-53. [39] 赵锋.浅水湖泊脱氮固氮与富营养化管理研究[D].无锡:江南大学,2021. [40] 孔欣,张树林,戴伟,等.氮、磷营养盐对铜绿微囊藻生长的影响[J].水产科技情报,2020,47(5):296-300. [41] 许海,刘兆普,袁兰,等.pH对几种淡水藻类生长的影响[J].环境科学与技术,2009,32(1):27-30. [42] 陈家长,王菁,裘丽萍,等.pH对鱼腥藻和普通小球藻生长竞争的影响[J].生态环境学报,2014,23(2):289-294. [43] 刘英霞,常显波,杨启霞.EM菌对养虾池水质的作用效果[J].安徽农业科学,2010,38(13):6891-6892. [44] HE W, LUO J, XING L H, et al. Effects of temperature-control curtain on algae biomass and dissolved oxygen in a large stratified reservoir:Sanbanxi Reservoir case study[J]. Journal of Environmental Management,2019,248:109250. [45] 张垒,李秋华,吴迪,等.贵州高原三板溪水库富营养化时空特征与影响因素[J].生态学杂志,2015,34(2):463-470. [46] 张觉民,何志辉.内陆水域渔业自然资源调查手册[M].北京:农业出版社,1991. [47] 石洪玥,郭永军,周可,等.施放高效生态制剂对鱼塘藻类结构的影响[J].天津农业科学,2014,20(10):83-88.