Effects of Salicylic Acid on High Temperature Resistance of Economic Brown Alga Sargassum thunbergii
WANG Xiaowei1, LYU Fang2,3,4, ZHOU Gefei1, WU Haiyi2,3,4
1. School of Life Science, YanTai University, Yantai 264005, China; 2. Shandong Province Macroalgae Resources Conservation and Application Engineering Research Center, Marine Science Institute of Shandong Province, Qingdao 266104, China; 3. Qingdao Key Laboratory of Coastal Ecological Restoration and Security, Qingdao 266104, China; 4. Qingdao Macroalgae Engineering Technology Research Center, Qingdao 266104, China
Abstract:In order to investigate the response of brown alga Sargassum thunbergii to high temperature stress and the effect of salicylic acid on its resistance to high temperature stress, four wild alga strains were placed in a 1000 mL conical flask, and 0, 1, 5, and 50 mg/L salicylic acid (SA) were added at 30 ℃ (treatment group), respectively. The growth rate, photosynthetic pigment content, chlorophyll fluorescence parameters of the alga strain were determined and the antioxidant system and HSP70 gene expression was detected after being cultured at high temperature for 3 days at 15 ℃ (control group) and 30 ℃ at different concentrations.The results showed that SA treatment significantly promoted the growth of the brown alga under high temperature. There were increase first and then decrease in specific growth rate, and chlorophyll a, chlorophyll c and carotenoid contents with elevated SA concentration, with the the most significant growth promotion in 5 mg/L SA group, with 589% increase in specific growth rate compared to the high temperature treatment, increase in the chlorophyll fluorescence parameter Fv/Fm, rebounded in non-photochemical quenching (NPQ) significantly, and increase in the activities of superoxide dismutase(SOD) and catalase (CAT). The expression level of HSP70 gene was found to be significantly increased under high temperature, 1 mg/L SA further promoting the expression of the HSP70 gene, whereas 5 mg/L and 50 mg/L SA leading to reduce HSP70 gene expression. The findings provide theoretical reference with the study of large-scale artificial breeding and mechanisms of stress resistance in S. thunbergii.
[1] 吴海一,詹冬梅,刘洪军,等.鼠尾藻对重金属锌、镉富集及排放作用的研究[J].海洋科学,2010,34(1):69-74. [2] 凌晶宇.大型海藻在人工藻礁建设中的应用及对相关海藻生物学特性的研究[D].上海:上海海洋大学,2015. [3] Lü F, DIND G, LIU W, et al. Comparative study of responses in the brown algae Sargassum thunbergii to zinc and cadmium stress[J]. Journal of Oceanology and Limnology,2018,36(3):933-941. [4] LIBERSKI A, LATIF N, RAYNAUD C, et al. Alginate for cardiac regeneration:from seaweed to clinical trials[J]. Global Cardiology Science & Practice,2016,2016(1):e201604. [5] 詹冬梅,王翔宇,辛美丽,等.三种马尾藻的营养组成分析[J].广西科学院学报,2016,32(3):221-225. [6] CATARINO M D, AMARANTE S J, MATEUS N, et al. Brown algae phlorotannins:a marine alternative to break the oxidative stress, inflammation and cancer network[J]. Foods,2021,10(7):1478. [7] 李训猛,章守宇,王凯,等.周年温度变化对枸杞岛铜藻生长特性的影响[J].海洋与湖沼,2020,51(5):1136-1143. [8] PAN Z, YU Y Y, CHEN Y L, et al. Combined effects of biomass density and low-nighttime temperature on the competition for growth and physiological performance of Gracilariopsis lemaneiformis and Ulva prolifera[J]. Algal Research,2022,62:102638. [9] 侯和胜,何文君,李洪艳,等.高温胁迫对条斑紫菜丝状体的生长和生理影响[J].辽宁师范大学学报(自然科学版),2008,31(4):487-490. [10] 凌晶宇,梁洲瑞,王飞久,等.高温对海带(Saccharina japonica)抗氧化酶及叶绿素荧光参数的影响[J].渔业科学进展,2016,37(3):120-125. [11] 臧晓南,张学成,张璐,等.藻类高温胁迫分子响应的研究进展[J].武汉大学学报(理学版),2008,54(6):732-738. [12] 李恬静薇,邹潇潇,鲍时翔.藻类对温度胁迫响应机制的国内外研究进展[J].渔业研究,2021,43(2):221-230. [13] 高政权,孟春晓,刁英英.施用水杨酸对雨生红球藻中虾青素积累的影响[J].水产科学,2007,26(7):377-380. [14] HAYAT Q, HAYAT S, IRFAN M, et al. Effect of exogenous salicylic acid under changing environment:a review[J]. Environmental and Experimental Botany,2010,68(1):14-25. [15] NAZAR R, IQBAL N, SYEED S, et al. Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars[J]. Journal of Plant Physiology,2011,168(8):807-815. [16] KHAN M I R, IQBAL N, MASOOD A, et al. Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation[J]. Plant Signaling & Behavior,2013,8(11):e26374. [17] GUPTA S, SETH C S. Salicylic acid alleviates chromium (Ⅵ) toxicity by restricting its uptake, improving photosynthesis and augmenting antioxidant defense in Solanum lycopersicum L[J]. Physiology and Molecular Biology of Plants,2021,27(11):2651-2664. [18] 朱招波,孙雪,徐年军,等.水杨酸对龙须菜抗高温生理的影响[J].水产学报,2012,36(8):1304-1312. [19] 王重彬,邹同雷,孙雪,等.水杨酸和茉莉酸甲酯对高温龙须菜(Gracilariopsis lemaneiformis)理化及基因表达的影响[J].海洋与湖沼,2015,46(5):1132-1138. [20] WANG F J, WANG C B, ZOU T L, et al. Comparative transcriptional profiling of Gracilariopsis lemaneiformis in response to salicylic acid- and methyl jasmonate-mediated heat resistance[J]. PLoS One,2017,12(5):e0176531. [21] 卓品利,钟佳丽,王东,等.不同光照条件下外源水杨酸对浒苔响应紫外辐射胁迫的影响[J].应用生态学报,2017,28(6):1977-1983. [22] 刘玮.鼠尾藻群体资源调查及人工繁育的研究[D].北京:中国科学院大学,2015. [23] JEFFREY S W,HUMPHREY G F. New spectrophotometric equations for determining chlorophylls a,b,c1 and c2 in higher plants, algae and natural phytoplankton[J]. Biochemie Und Physiologie Der Pflanzen,1975,167(2):191-194. [24] WELLBURN A R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution[J]. Journal of Plant Physiology,1994,144(3):307-313. [25] 吴海一,丁刚,张绍春,等.利用响应面法优化鼠尾藻幼苗生长条件的研究[J].中国海洋大学学报(自然科学版),2015,45(7):34-38. [26] 赵志方,秦松,刘正一,等.鼠尾藻(Sargassum thunbergii)固碳能力对流速的响应[J].海洋学报,2022,44(2):113-122. [27] 吕燕,汪芳俊,林丽春,等.龙须菜中rbc L和hsp70对高温和植物激素的响应[J].水产学报,2019,43(4):886-894. [28] 刘丽杰,林立东.高温对褐藻羊栖菜逆境生理的影响[J].热带海洋学报,2021,40(2):74-82. [29] 姜宏波,田相利,董双林,等.温度和光照强度对鼠尾藻生长和生化组成的影响[J].应用生态学报,2009,20(1):185-189. [30] 陈洁.鼠尾藻人工养殖技术及在综合养殖系统中应用的研究[D].上海:上海海洋大学,2015. [31] 韦莹莹,王鹏,刘岩,等.温度对不同生长时期鼠尾藻生长及光合作用的影响[J].海洋湖沼通报,2021,43(6):100-108. [32] 贺亮.高温胁迫下半叶马尾藻中国变种生理生化响应及其耐热机制的初步研究[D].湛江:广东海洋大学,2017. [33] 邹同雷.逆境条件对龙须菜水杨酸代谢相关酶活性、基因表达及水杨酸含量的影响[D].宁波:宁波大学,2016. [34] 王艳朋,杨二波,祝学刚,等.水杨酸与植物耐性研究进展[J].安徽农业科学,2021,49(23):22-24. [35] 董贞芬,门宇恒,邹秋滢,等.叶绿素荧光成像在植物生长环境胁迫中的应用[J].沈阳农业大学学报,2019,50(2):250-256. [36] 郝召君.芍药对高温胁迫的响应及其化学调控机制研究[D].扬州:扬州大学,2017. [37] 任建敏.类胡萝卜素结构及在动植物中的功能与生理活性[J].重庆工商大学学报(自然科学版),2021,38(2):102-107. [38] JIANG H S, ZHANG Y Z, YIN L Y, et al. Diurnal changes in photosynthesis by six submerged macrophytes measured using fluorescence[J]. Aquatic Botany,2018,149:33-39. [39] GILL S S, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry, 2010,48(12):909-930. [40] 祁茂冬,谢鑫,魏凤菊.禾本科植物HSP70研究进展[J].植物生理学报,2019,55(8):1054-1062. [41] GU Y H, ZHANG X, LU N, et al. Cloning and transcription analysis of hsp70-1 and hsp70-2 of Gracilaria lemaneiformis under heat shock[J]. Aquaculture,2012,358/359:284-291. [42] ZHANG H N, LI W, LI J J, et al. Characterization and expression analysis of hsp70 gene from Ulva prolifera J. Agardh (Chlorophycophyta, Chlorophyceae)[J]. Marine Genomics,2012,5:53-58.