Thermal Insulation Materials and Technologies for Industrialized Aquaculture: Research Progress and Prospect
WANG Xian1,2, WU Gang1,2, LIU Suping1,2, SUN Wei1,2, SHEN Lu1, ZHAO Chenxu1,2, REN Xiaozhong2
1. College of Ocean and Civil Engineering, Dalian Ocean University, Dalian 116023, China; 2. Key Laboratory of Environment Controlled Aquaculture(Dalian Ocean University), Ministry of Education, Dalian 116023, China
[1] ZHOU Y X, XUE B R, LIU H B, et al. Numerical simulation of bionic fish group movement in a land-based aquaculture tank[J]. Aquacultural Engineering,2024,104:102388. [2] LIU H B, ZHOU Y X, REN X Z, et al. Numerical modeling and application of the effects of fish movement on flow field in recirculating aquaculture system[J]. Ocean Engineering,2023,285:115432. [3] FALCONER L, HJØLLO S S, TELFER T C,et al. The importance of calibrating climate change projections to local conditions at aquaculture sites[J]. Aquaculture,2020,514:734487. [4] HASEGAWA T, FUJIMORI S, HAVLÍK P, et al. Risk of increased food insecurity under stringent global climate change mitigation policy[J]. Nature Climate Change,2018,8:699-703. [5] MAULU S, HASIMUNA O J, HAAMBIYA L H, et al. Climate change effects on aquaculture production:sustainability implications, mitigation, and adaptations[J]. Frontiers in Sustainable Food Systems,2021,5:609097. [6] CHEN W J, GAO S Y. Current status of industrialized aquaculture in China:a review[J]. Environmental Science and Pollution Research International,2023,30(12):32278-32287. [7] 周寅鑫,刘海波,胡伟,等.鱼类趋流性在循环水养殖系统中的应用与展望[J].水产科学,2024,43(5):822-832. [8] DAHLKE F T, WOHLRAB S, BUTZIN M, et al. Thermal bottlenecks in the life cycle define climate vulnerability of fish[J]. Science,2020,369(6499):65-70. [9] GEFFROY B,WEDEKIND C. Effects of global warming on sex ratios in fishes[J]. Journal of Fish Biology,2020,97(3):596-606. [10] 孙侦龙,宋家帅,焦冬祥,等.工厂化水产养殖设施保温技术研究进展[J].现代农业科技,2024(5):182-188. [11] 中华人民共和国住房和城乡建设部.公共建筑节能设计标准:GB 50189—2015[S].北京:中国建筑工业出版社,2015. [12] 赵婧竹,朱荣花,古新,等.超低能耗居住建筑围护结构节能及保温材料研究[J].当代化工,2023,52(11):2580-2583. [13] 朱芳,朱松明,叶章颖,等.密闭遮光型甲鱼温室热环境模拟与试验[J].农业工程学报,2014,30(10):182-192. [14] 王竟成,全涌,顾明.基于台风过程的建筑围护结构设计风压估算方法[J].建筑结构学报,2021,42(4):1-6. [15] 张智一.产业集聚背景下海水鱼类不同养殖模式生态经济绩效研究[D].上海:上海海洋大学,2020. [16] AHMED N,THOMPSON S, GLASER M.Global aquaculture productivity, environmental sustainability, and climate change adaptability[J]. Environmental Management,2019,63(2):159-172. [17] 赵鹏,李贤,周兴,等.海水工厂化养殖能耗及新能源应用调研分析[J].渔业现代化,2011,38(2):21-26. [18] 任效忠,周寅鑫,车宗龙,等.海水高密度养殖系统流场营造及与鱼类相互影响的研究与展望[J].海洋环境科学,2023,42(3):483-492. [19] 史宪莹,李猛,任效忠,等.长宽比对双进水管结构矩形圆弧角养殖池排污特性的影响[J].大连海洋大学学报,2023,38(4):707-716. [20] AHAMED M S, GUO H Q, TANINO K. Energy saving techniques for reducing the heating cost of conventional greenhouses[J]. Biosystems Engineering,2019,178:9-33. [21] 裴雷.大型双层塑料薄膜水产养殖温室冬季热环境研究[D].杭州:浙江大学,2015. [22] STEHFEST K M, CARTER C G, MCALLISTER J D, et al.Response of Atlantic salmon Salmo salar to temperature and dissolved oxygen extremes established using animal-borne environmental sensors[J]. Scientific Reports,2017,7(1):4545. [23] ABRAM Q H, DIXON B, KATZENBACK B A. Impacts of low temperature on the teleost immune system[J]. Biology,2017,6(4):39. [24] 农业部渔业渔政管理局.2004中国渔业统计年鉴[M].北京:中国农业出版社,2004:15. [25] 农业农村部渔业渔政管理局,全国水产技术推广总站,中国水产学会.2024中国渔业统计年鉴[M].北京:中国农业出版社,2024:21-49. [26] 朱晓琳.装配式复合墙结构体系外围护结构保温性能研究与评价[D].西安:西安建筑科技大学,2018. [27] ZHAO J, WEN Y C, ZHU S M, et al. Solving post-prandial reduction in performance by adaptive regurgitation in a freshwater fish[J]. Proceedings. Biological Sciences,2020,287(1938):20202172. [28] JI M D, LI H J, LI J P, et al. Effect of mesh size on microscreen filtration combined with foam fractionation for solids removal in recirculating aquacultural seawater[J]. North American Journal of Aquaculture,2020,82(2):215-223. [29] TIWARI G N. Analysis of winter greenhouse[J]. International Journal of Solar Energy,1985,3(1):19-24. [30] 王丕浩.一种陆基高位池保温棚养殖罗非鱼技术模式[J].河北渔业,2023(12):16-18. [31] 尉莹,邱天龙,杜以帅,等.中空膜无小梁太阳能水产温室温度场研究与分析[J].水产科学,2021,40(3):369-379. [32] MASHONJOWA E, RONSSE F, MILFORD J R, et al. Modelling the thermal performance of a naturally ventilated greenhouse in Zimbabwe using a dynamic greenhouse climate model[J]. Solar Energy,2013,91:381-393. [33] YANG Z P, LI D S, SONG J S, et al. Numerical calculation and experimental analysis of thermal environment in industrialized aquaculture facilities[J]. PLoS One,2023,18(9):e0290449. [34] 陈灵印.工厂化循环水养殖车间围护结构的节能研究[D].大连:大连海洋大学,2023. [35] 张相勇,陈华周,高占祥,等.严寒地区装配式钢结构框架-ALC外墙传热性能有限元分析[J].建筑钢结构进展,2023,25(7):95-107. [36] 于海南.大型水产养殖温室热环境调控策略和供热技术研究[D].杭州:浙江大学,2016. [37] 张慧鑫.海水养殖水温三维传热模型与控制算法的研究[D].沈阳:东北大学,2011. [38] 李慧娟.对养鱼温室结构的优化及其鱼池边界温度场的研究[D].哈尔滨:东北农业大学,2003. [39] JAMU D M, PIEDRAHITA R H. Ten-year simulations of organic matter concentrations in tropical aquaculture ponds using the multiple pool modeling approach[J]. Aquacultural Engineering,2001,25(3):187-201. [40] LAMOUREUX J, TIERSCH T R, HALL S G. Pond heat and temperature regulation (PHATR):modeling temperature and energy balances in earthen outdoor aquaculture ponds[J]. Aquacultural Engineering,2006,34(2):103-116. [41] FRIKHA S, FRIKHA N, GABSI S. Modeling of the flow inside a pore in vacuum membrane distillation[J]. Euro-Mediterranean Journal for Environmental Integration,2021,6(3):66. [42] 王九龙.低能耗工厂化养鱼池优化设计研究[D].银川:宁夏大学,2022. [43] CAUSONE F, PIETROBON M, PAGLIANO L, et al. A high performance home in the Mediterranean climate:from the design principle to actual measurements[J]. Energy Procedia,2017,140:67-79. [44] ASCIONE F, BIANCO N, MARIA MAURO G, et al. Building envelope design:multi-objective optimization to minimize energy consumption, global cost and thermal discomfort. Application to different Italian climatic zones[J]. Energy,2019,174:359-374. [45] MENG X, HUANG Y Q, CAO Y, et al. Optimization of the wall thermal insulation characteristics based on the intermittent heating operation[J]. Case Studies in Construction Materials,2018,9:e00188. [46] ION I V, POPESCU F, COMAN G, et al. Heat requirement in an indoor recirculating aquaculture system[J]. Energy Reports,2022,8:11707-11714. [47] 柯宇,罗利明,彭慧蕴,等.双碳背景下建筑保温材料优选路径研究[J].化工矿物与加工,2024,53(8):23-33. [48] ABU-JDAYIL B, MOURAD A H, HITTINI W, et al. Traditional, state-of-the-art and renewable thermal building insulation materials:an overview[J]. Construction and Building Materials,2019,214:709-735. [49] JELLE B P. Traditional, state-of-the-art and future thermal building insulation materials and solutions-properties, requirements and possibilities[J]. Energy and Buildings,2011,43(10):2549-2563. [50] KUMAR D, ALAM M, ZOU P X W, et al. Comparative analysis of building insulation material properties and performance[J]. Renewable and Sustainable Energy Reviews,2020,131:110038. [51] KYMÄLÄINEN H R, SJÖBERG A M. Flax and hemp fibres as raw materials for thermal insulations[J]. Building and Environment, 2008,43(7):1261-1269. [52] VILLASMIL W, FISCHER L J, WORLITSCHEK J. A review and evaluation of thermal insulation materials and methods for thermal energy storage systems[J]. Renewable and Sustainable Energy Reviews,2019,103:71-84. [53] 聂懿.工厂化养殖温室材料的使用现状及发展趋势[J].中国水产,2013(8):66-68. [54] TATEMATSU K, HIROTA T, SUZUKI H, et al. Influence of temperature and moisture on aging of glass wool[J]. Journal of Environmental Engineering (Transactions of AIJ),2014,79(703):753-762. [55] ADITYA L, MAHLIA T M I, RISMANCHI B, et al. A review on insulation materials for energy conservation in buildings[J]. Renewable and Sustainable Energy Reviews,2017,73:1352-1365. [56] SCHIAVONI S, DALESSANDRO F, BIANCHI F, et al. Insulation materials for the building sector:a review and comparative analysis[J]. Renewable and Sustainable Energy Reviews,2016,62:988-1011. [57] 吕忠,周飞,李松鹏.建筑用真空绝热板芯材研究进展[J].中国材料进展,2019,38(2):155-160. [58] ALOTAIBI S S, RIFFAT S. Vacuum insulated panels for sustainable buildings:a review of research and applications[J]. International Journal of Energy Research,2014,38(1):1-19. [59] CUCE E, CUCE P M, WOOD C J, et al. Toward aerogel based thermal superinsulation in buildings:a comprehensive review[J]. Renewable and Sustainable Energy Reviews,2014,34:273-299. [60] GARRIDO R, SILVESTRE J D, FLORES-COLEN I, et al. Economic assessment of the production of subcritically dried silica-based aerogels[J]. Journal of Non-Crystalline Solids,2019,516:26-34. [61] STOJANOVIC A, PAZ COMESAÑA S, RENTSCH D, et al. Ambient pressure drying of silica aerogels after hydrophobization with mono-, di- and tri-functional silanes and mixtures thereof[J]. Microporous and Mesoporous Materials,2019,284:289-295. [62] 陈晓星,李任戈,徐坤,等.新型保温材料在钢结构模块化零能耗住宅中应用研究[J].广东土木与建筑,2023,30(5):48-50. [63] 陈淑琴,朱毅攀,谢静超,等.相变材料在南方塑料大棚中的冬季使用策略及效果研究[J].太阳能学报,2020,41(11):205-211. [64] 李鹏,张亚红,白青,等.基于日光温室相变材料的梯形墙体热特性分析[J].中国农业气象,2019,40(10):620-629. [65] MURPHY J. Long-term aging of closed-celled foam insulation[J]. Cellular Polymers,2010,29(5):313-326. [66] YE Z, WELLS C M, CARRINGTON C G, et al. Thermal conductivity of wool and wool-hemp insulation[J]. International Journal of Energy Research,2006,30(1):37-49. [67] PATNAIK A, MVUBU M, MUNIYASAMY S, et al. Thermal and sound insulation materials from waste wool and recycled polyester fibers and their biodegradation studies[J]. Energy and Buildings,2015,92:161-169.