|
|
双壳类神经系统结构和神经内分泌系统功能的研究进展 |
伍旭辉1, 王亚冰1, 陶川贵1, 张家炜1, 王庆恒1,2,3 |
1.广东海洋大学 珍珠研究所/水产学院, 广东 湛江 524088; 2.广东省珍珠养殖与加工工程技术研究中心,广东 湛江 524088; 3.广东省珍珠科技创新中心, 广东 湛江 524088 |
|
Research Progress on Structure of Nervous System and the Function of Neuroendocrine System in Bivalves: a Review |
WU Xuhui1, WANG Yabing1, TAO Chuangui1, ZHANG Jiawei1, WANG Qingheng1,2,3 |
1. Pearl Research Institute/Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; 2. Guangdong Technology Research Center for Pearl Aquaculture and Process, Zhanjiang 524088, China; 3. Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang 524088, China |
引用本文: |
伍旭辉, 王亚冰, 陶川贵, 张家炜, 王庆恒. 双壳类神经系统结构和神经内分泌系统功能的研究进展[J]. 水产科学, 2025, 44(5): 845-856.
WU Xuhui, WANG Yabing, TAO Chuangui, ZHANG Jiawei, WANG Qingheng. Research Progress on Structure of Nervous System and the Function of Neuroendocrine System in Bivalves: a Review. Fisheries Science, 2025, 44(5): 845-856.
|
|
|
|
链接本文: |
https://www.shchkx.com/CN/10.16378/j.cnki.1003-1111.24192 或 https://www.shchkx.com/CN/Y2025/V44/I5/845 |
[1] 刘凌云,郑光美.普通动物学[M]. 4版.北京:高等教育出版社,2009. [2] GRABOWSKI J H, BRUMBAUGH R D, CONRAD R F, et al. Economic valuation of ecosystem services provided by oyster reefs[J]. BioScience,2012,62(10):900-909. [3] GREEVE Y, BERGSTRÖM P, STRAND Å, et al. Corrigendum: estimating and scaling-up biomass and abundance of epi-and infaunal bivalves in a Swedish archipelago region: implications for ecological functions and ecosystem services[J]. Frontiers in Marine Science,2023,10:1105999. [4] VAN DER SCHATTE OLIVIER A, JONES L, LE VAY L, et al. A global review of the ecosystem services provided by bivalve aquaculture[J]. Reviews in Aquaculture,2020,12(1):3-25. [5] ELSKUS A A, LEBLANC L A, LATIMER J S, et al. Monitoring chemical contaminants in the Gulf of Maine, using sediments and mussels (Mytilus edulis):an evaluation[J]. Marine Pollution Bulletin,2020,153:110956. [6] BORCHERDING J. Ten years of practical experience with the Dreissena-monitor, a biological early warning system for continuous water quality monitoring[J]. Hydrobiologia,2006,556(1):417-426. [7] WILLER D F, ALDRIDGE D C. Microencapsulated diets to improve bivalve shellfish aquaculture for global food security[J]. Global Food Security,2019,23:64-73. [8] TAN K, ZHENG H P. Ocean acidification and adaptive bivalve farming[J]. Science of the Total Environment,2020,701:134794. [9] YURCHENKO O V, SKITEVA O I, VORONEZHSKAYA E E, et al. Nervous system development in the Pacific oyster, Crassostrea gigas (Mollusca:Bivalvia)[J]. Frontiers in Zoology,2018,15:10. [10] 孙虎山,王宜艳.栉孔扇贝神经节结构的显微观察[J]. 中国水产科学,2007,14(3):390-396. [11] 郭仁庆,毛成责,魏爱泓.灌河口潮间带大型底栖动物群落结构[J]. 江苏海洋大学学报(自然科学版),2024,33(2):40-45. [12] MIESZKOWSKA N, KENDALL M A, HAWKINS S J, et al. Changes in the range of some common rocky shore species in Britain—a response to climate change?[J]. Hydrobiologia, 2006,555:241-251. [13] HARLEY C D G. Climate change, keystone predation, and biodiversity loss[J]. Science,2011,334(6059):1124-1127. [14] 王玲玲.贝类神经内分泌系统对免疫应答的调节机制[J]. 大连海洋大学学报,2022,37(3):363-375. [15] ALTURKISTANI H A, TASHKANDI F M, MOHAMMEDSALEH Z M. Histological stains:a literature review and case study[J]. Global Journal of Health Science,2015,8(3):72-79. [16] 李国华,程济民,王秋雨,等.脉红螺(Rapana venosa)神经系统解剖的初步研究[J]. 动物学报,1990,36(4):345-351. [17] 戴鸿佐,李瑞秋.褐云玛瑙螺(Achatina fulica ferussac)脑神经节显微结构的观察[J]. 神经解剖学杂志,1989,5(2):229-234. [18] 王晓安,蒋小满.中国蛤蜊神经系统显微结构的初步研究[J]. 动物学杂志,1999,34(4):6-9. [19] 孙虎山,王宜艳,武光全.缢蛏和长竹蛏中枢神经系统的显微观察[J]. 鲁东大学学报(自然科学版),2006,22(3):216-220. [20] YURCHENKO O V, SAVELIEVA A V, KOLOTUCHINA N K, et al. Peripheral sensory neurons govern development of the nervous system in bivalve larvae[J]. EvoDevo,2019,10:22. [21] SCHMIDT-RHAESA A, HARZSCH S, PURSCHKE G. Structure and evolution of invertebrate nervous systems[M]. Oxford: Oxford University Press, 2016. [22] 顾兵,金建波,李华南,等. 神经组织染色方法的研究概况[J]. 中国药理学通报,2011,27(10):1472-1475. [23] KIERNAN J A, MACPHERSON C M, PRICE A, et al. A histochemical examination of the staining of kainate-induced neuronal degeneration by anionic dyes[J]. Biotechnic & Histochemistry,1998,73(5):244-254. [24] 牟洪善,李金萍,王琨.软体动物神经系统的研究进展[J]. 生命科学仪器,2008,6(10):6-8. [25] 孙虎山,王宜艳,王晓安,等.栉孔扇贝神经节一氧化氮合酶的组织化学和免疫组化定位[J]. 中国水产科学,2005,12(1):20-25. [26] 周航宇,姜淮芜,王明佳.5-羟色胺及其受体研究进展[J]. 山东医药,2014,54(12):90-93. [27] CAO Z H, SUN L L, CHI C F, et al. Molecular cloning, expression analysis and cellular localization of an LFRFamide gene in the cuttlefish Sepiella japonica[J]. Peptides,2016,80:40-47. [28] NIKISHCHENKO V E, DYACHUK V A. Comparison of neurogenesis in bivalves with different types of development[J]. Scientific Reports, 2024,14(1):19495. [29] VORONEZHSKAYA E E, NEZLIN L P, ODINTSOVA N A, et al. Neuronal development in larval mussel Mytilus trossulus (Mollusca:Bivalvia)[J]. Zoomorphology,2008,127(2):97-110. [30] KNIAZKINA M, DYACHUK V. Neurogenesis of the scallop Azumapecten farreri:from the first larval sensory neurons to the definitive nervous system of juveniles[J]. Frontiers in Zoology,2022,19(1):22. [31] YURCHENKO O V, DYACHUK V A. Characterization of neurodevelopment in larvae of the protobranch Acila insignis (Gould, 1861) in order to reconstruct the last common ancestor of bivalves[J]. Malacologia,2022,64(2):241-255. [32] SALAS C, DE DIOS BUENO-PÉREZ J, LÓPEZ-TÉLLEZ J F, et al. Form and function of the mantle edge in Protobranchia (Mollusca:Bivalvia)[J]. Zoology,2022,153:126027. [33] EVSEEV G A, YAKOVLEV Y M, LI X X. The anatomy of the Pacific oyster, Crassostrea gigas (Thurnberg)(Bivalvia:Ostreidae)[J]. Publications of the Seto Marine Biological Laboratory,1996,37(3/4/5/6):239-255. [34] 刘兆群.长牡蛎神经内分泌免疫系统调节机制的初步研究[D]. 青岛:中国科学院大学(中国科学院海洋研究所),2017. [35] SUGAWARA Y. Microscopical studies of the nervous system in oysters[J]. Archivum Histologicum Japonicum,1964,24:257-272. [36] DAME R F. Ecology of Marine Bivalves[M]. 2nd ed.Boca Raton: CRC Press, 2016. [37] LI M J,WANG M, WANG W L, et al. The immunomodulatory function of invertebrate specific neuropeptide FMRFamide in oyster Crassostrea gigas[J]. Fish & Shellfish Immunology,2019,88:480-488. [38] NIKISHCHENKO V, KOLOTUKHINA N, DYACHUK V. Comparative neuroanatomy of pediveliger larvae of various bivalves from the sea of Japan[J]. Biology,2023,12(10):1341. [39] SPEISER D I, WILKENS L A. Neurobiology and behaviour of the scallop[J]. Developments in Aquaculture and Fisheries Science,2016,40:219-251. [40] AUDINO J A, MARIAN J E A R, WANNINGER A, et al. Anatomy of the pallial tentacular organs of the scallop Nodipecten nodosus (Linnaeus, 1758) (Bivalvia:Pectinidae)[J]. Zoologischer Anzeiger—A Journal of Comparative Zoology,2015,258:39-46. [41] LINDBERG D R, SIGWART J D. What is the molluscan osphradium?A reconsideration of homology[J]. Zoologischer Anzeiger—A Journal of Comparative Zoology,2015,256:14-21. [42] MILLER H V, KINGSTON A C N, GAGNON Y L, et al. The mirror-based eyes of scallops demonstrate a light-evoked pupillary response[J]. Current Biology,2019,29(9):313-314. [43] MORTON B. The pallial eyes of Ctenoides floridanus (Bivalvia:Limoidea)[J]. Journal of Molluscan Studies,2000,66(4):449-455. [44] AUDINO J A, SERB J M, MARIAN J E A R. Hard to get, easy to lose:evolution of mantle photoreceptor organs in bivalves (Bivalvia, Pteriomorphia)[J]. Evolution,2020,74(9):2105-2120. [45] OSADA M, MATSUTANI T, NOMURA T. Implication of catecholamines during spawning in marine bivalve molluscs[J]. International Journal of Invertebrate Reproduction and Development,1987,12(3):241-251. [46] 周智.栉孔扇贝(Chlamys farreri)儿茶酚胺能神经内分泌免疫调节系统的初步研究[D]. 青岛:中国科学院研究生院(海洋研究所),2011. [47] KOTSYUBA E, DYACHUK V. Role of the neuroendocrine system of marine bivalves in their response to hypoxia[J]. International Journal of Molecular Sciences,2023,24(2):1202. [48] LIU Z Q, WANG L L, LV Z, et al. The cholinergic and adrenergic autocrine signaling pathway mediates immunomodulation in oyster Crassostrea gigas[J]. Frontiers in Immunology,2018,9:284. [49] LACOSTE A, MALHAM S K, CUEFF A, et al. Stress-induced catecholamine changes in the hemolymph of the oyster Crassostrea gigas[J]. General and Comparative Endocrinology,2001,122(2):181-188. [50] 李美佳.长牡蛎不同类型神经递质及其受体对免疫应答调节作用的初步研究[D]. 厦门:厦门大学,2021. [51] 高菲,杨红生,许强,等.双壳贝类血淋巴中儿茶酚胺的检测方法初步研究[J]. 海洋科学,2006,30(1):28-33. [52] ZHOU Z, JIANG Q F, WANG M Q, et al. Modulation of haemocyte phagocytic and antibacterial activity by alpha-adrenergic receptor in scallop Chlamys farreri[J]. Fish & Shellfish Immunology,2013,35(3):825-832. [53] WANG L L, SONG L S, NI D J, et al. Alteration of metallothionein mRNA in bay scallop Argopecten irradians under cadmium exposure and bacteria challenge[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology,2009,149(1):50-57. [54] CROLL R P, JACKSON D L, VORONEZHSKAYA EE. Catecholamine-containing cells in larval and postlarval bivalve molluscs[J]. The Biological Bulletin, 1997, 193(2): 116-124. [55] 史晓委. 栉孔扇贝(Chlamys farreri)胆碱能神经免疫调节系统的初步研究[D]. 青岛:中国科学院研究生院(海洋研究所),2012. [56] ZHA G C, CHEN V P, LUK W K W, et al. Characterization of acetylcholinesterase in Hong Kong oyster (Crassostrea hongkongensis) from South China Sea[J]. Chemico-Biological Interactions,2013,203(1):277-281. [57] 王燕静,王宜艳,马学敏,等.乙酰胆碱对栉孔扇贝血淋巴中过氧化物酶活性和一氧化氮含量的影响[J]. 水产科学,2011,30(10):631-634. [58] KOTSYUBA E, DYACHUK V. Effect of air exposure-induced hypoxia on neurotransmitters and neurotransmission enzymes in ganglia of the scallop Azumapecten farreri[J]. International Journal of Molecular Sciences,2022,23(4):2027. [59] KAVUN V Y, CHEPKASOVA A I, PODGURSKAYA O V, et al. Adaptation of the cholinergic system of Crenomytilus grayanus (Bivalvia, Mytilidae) to the impact of natural and anthropogenic conditions[J]. Biology Bulletin,2011,38(2):176-182. [60] ELKADER H A E A, AL-SHAMI A S. Acetylcholinesterase and dopamine inhibition suppress the filtration rate, burrowing behaviours, and immunological responses induced by bisphenol A in the hemocytes and gills of date mussels, Lithophaga lithophaga[J]. Aquatic Toxicology,2024,272:106971. [61] SHAN Y, YAN S H, HONG X S, et al. Effect of imidacloprid on the behavior, antioxidant system, multixenobiotic resistance, and histopathology of Asian freshwater clams (Corbicula fluminea)[J]. Aquatic Toxicology,2020,218:105333. [62] FU L T, XI M, NICHOLAUS R, et al. Behaviors and biochemical responses of macroinvertebrate Corbicula fluminea to polystyrene microplastics[J]. Science of the Total Environment,2022,813:152617. [63] 黄晓婷,杨祖晶,王浩,等.侏儒蛤潜沙行为研究[J]. 中国海洋大学学报(自然科学版),2020,50(9):64-71. [64] 张树源,王新星,刘琦,等.底质和规格对缢蛏潜沙行为及摄食率的影响[J]. 大连海洋大学学报,2023,38(5):804-811. [65] LIU H H, WU J, XU M S, et al. A novel biomarker for marine environmental pollution of HSP90 from Mytilus coruscus[J]. Marine Pollution Bulletin,2016,111(1/2):428-434. [66] MONCADA S, PALMER R M, HIGGS E A. Nitric oxide:physiology, pathophysiology, and pharmacology[J]. Pharmacological Reviews,1991,43(2):109-142. [67] 孙虎山,王宜艳,王晓安,等.栉孔扇贝(Chlamys farreri)血淋巴中一氧化氮和一氧化氮合酶的研究[J]. 海洋与湖沼,2005,36(4):343-348. [68] 孙虎山,王宜艳,王晓安,等.栉孔扇贝(Chlamys farreri)外套膜一氧化氮合酶的研究[J]. 海洋与湖沼,2007,38(2):174-179. [69] 王宜艳,孙虎山,王晓安.栉孔扇贝鳃、唇瓣和口唇一氧化氮合酶活性[J]. 海洋湖沼通报,2007,29(3):63-68. [70] 张亚.一氧化氮在厚壳贻贝变态发育和免疫中的作用研究[D]. 上海:上海海洋大学,2018. [71] LICATA A, AINIS L, MARTELLA S, et al. Immunohistochemical localization of nNOS and VIP in the mantle integument of the mussel, Mytilus galloprovincialis[J]. Acta Histochemica,2003,105(2):143-149. [72] TAFALLA C, GÓMEZ-LEÓN J, NOVOA B, et al. Nitric oxide production by carpet shell clam (Ruditapes decussatus) hemocytes[J]. Developmental & Comparative Immunology,2003,27(3):197-205. [73] JIANG Q F, ZHOU Z, WANG L L, et al. A scallop nitric oxide synthase (NOS) with structure similar to neuronal NOS and its involvement in the immune defense[J]. PLoS One,2013,8(7):e69158. [74] IVANINA A V, EILERS S, KUROCHKIN I O, et al. Effects of cadmium exposure and intermittent anoxia on nitric oxide metabolism in eastern oysters, Crassostrea virginica[J]. Journal of Experimental Biology,2010,213(3):433-444. [75] STRAHL J, ABELE D. Nitric oxide mediates metabolic functions in the bivalve Arctica islandica under hypoxia[J]. PLoS One, 2020,15(5):e0232360. [76] ZHU Y T, ZHANG Y, LIU Y Z, et al. Nitric oxide negatively regulates larval metamorphosis in hard-shelled mussel (Mytilus coruscus)[J]. Frontiers in Marine Science,2020,7:356. [77] YOU Q Y, LI Q J, LV L Y, et al. Genome-wide identification of 5-HT receptor gene family in razor clam Sinonovacula constricta and their circadian rhythm expression analysis[J]. Animals,2023,13(20):3208. [78] 李海霞,刘鹰,张旭,等.神经递质5-羟色胺(5-HT)及其受体对鱼类行为和生理影响的研究进展[J]. 大连海洋大学学报,2022,37(1):174-182. [79] DONG W J, LIU Z Q, QIU L M, et al. The modulation role of serotonin in Pacific oyster Crassostrea gigas in response to air exposure[J]. Fish & Shellfish Immunology,2017,62:341-348. [80] 杨创业,章佳斌,曾业涛,等.化学物质诱导对马氏珠母贝眼点幼虫附着的影响[J]. 广东海洋大学学报,2022,42(1):29-34. [81] MAPARA S, PARRIES S, QUARRINGTON C, et al. Identification, molecular structure and expression of two cloned serotonin receptors from the pond snail, Helisoma trivolvis[J]. Journal of Experimental Biology,2008,211(Pt 6):900-910. [82] GUERRFFIR P, DUROCHER Y, GOBET I, et al. Reception and transduction of the serotonin signal responsible for oocyte meiosis reinitiation in bivalves[J]. Invertebrate Reproduction & Development,1996,30(1/2/3):39-45. [83] MEECHONKIT P, ASUVAPONGPATANA S, JUMROMN W, et al. Sexual differences in serotonin distribution and induction of synchronous larval release by serotonin in the freshwater mussel Hyriopsis bialatus[J]. Journal of Molluscan Studies,2012,78(3):297-303. [84] HAMIDA L, MEDHIOUB M N, COCHARD J C, et al. Evaluation of the effects of serotonin (5-HT) on oocyte competence in Ruditapes decussatus (Bivalvia,Veneridae)[J]. Aquaculture,2004,239(1/2/3/4):413-420. [85] 王清,张涛,张立斌.cAMP信号通路在5-羟色胺诱导硬壳蛤卵母细胞成熟过程中的作用[J]. 高技术通讯,2008,18(1):91-96. [86] 巫旗生,祁剑飞,罗娟,等.氨海水和5-羟色胺对菲律宾蛤仔解剖配子体外促熟的影响[J]. 渔业研究,2023,45(4):341-345. [87] 巫旗生,祁剑飞,宁岳,等.5-羟色胺和氨海水对钝缀锦蛤解剖卵母细胞的体外促熟作用[J]. 渔业研究,2022,44(5):477-483. [88] HIEMKE C, HÄRTTER S. Pharmacokinetics of selective serotonin reuptake inhibitors[J]. Pharmacology & Therapeutics,2000,85(1):11-28. [89] FONG P P, FORD A T. The biological effects of antidepressants on the molluscs and crustaceans:a review[J]. Aquatic Toxicology,2014,151:4-13. [90] FORD A T, FONG P P. The effects of antidepressants appear to be rapid and at environmentally relevant concentrations[J]. Environmental Toxicology and Chemistry,2016,35(4):794-798. [91] HAZELTON P D, COPE W G, MOSHER S, et al. Fluoxetine alters adult freshwater mussel behavior and larval metamorphosis[J]. Science of the Total Environment,2013,445:94-100. [92] CUMMINGS D, JACOBS M, CARROLL M A, et al. Immunohistofluorescence localization of biogenic amine receptors in ganglia and tissues of the bivalve mollusc, Mytilus edulis[J]. The FASEB Journal,2017,31(S1):936.2. [93] JIANG Z J, WANG X Q, RASTRICK S P S, et al. Metabolic responses to elevated pCO2 in the gills of the Pacific oyster (Crassostrea gigas) using a GC-TOF-MS-based metabolomics approach[J]. Comparative Biochemistry and Physiology. Part D, Genomics & Proteomics,2019,29:330-338. [94] LI M J, QIU L M, WANG L L, et al. The inhibitory role of γ-aminobutyric acid (GABA) on immunomodulation of Pacific oyster Crassostrea gigas[J]. Fish & Shellfish Immunology,2016,52:16-22. [95] LI M J, WANG L L, QIU L M, et al. A glutamic acid decarboxylase (CgGAD) highly expressed in hemocytes of Pacific oyster Crassostrea gigas[J]. Developmental & Comparative Immunology,2016,63:56-65. [96] XU R Y, PAN L Q, YANG Y Y, et al. Characterizing transcriptome in female scallop Chlamys farreri provides new insights into the molecular mechanisms of reproductive regulation during ovarian development and spawn[J]. Gene,2020,758:144967. [97] YU Y H, TIAN D D, RI S, et al. Gamma-aminobutyric acid (GABA) suppresses hemocyte phagocytosis by binding to GABA receptors and modulating corresponding downstream pathways in blood clam, Tegillarca granosa[J]. Fish & Shellfish Immunology,2023,134:108608. [98] MESÍAS-GANSBILLER C, EL AMINE BENDIMERAD M, ROMÁN G, et al. Settlement behavior of black scallop larvae (Chlamys varia, L. ) in response to GABA, epinephrine and IBMX[J]. Journal of Shellfish Research,2008,27(2):261-264. [99] ZHANG J B, XIONG X W, DENG Y W, et al. Integrated application of transcriptomics and metabolomics provides insights into the larval metamorphosis of pearl oyster (Pinctada fucata Martensii)[J]. Aquaculture,2021,532:736067. [100] CLEMENTS J C, WOODARD K D, HUNT H L. Porewater acidification alters the burrowing behavior and post-settlement dispersal of juvenile soft-shell clams (Mya arenaria)[J]. Journal of Experimental Marine Biology and Ecology,2016,477:103-111. [101] CLEMENTS J C, BISHOP M M, HUNT H L. Elevated temperature has adverse effects on GABA-mediated avoidance behaviour to sediment acidification in a wide-ranging marine bivalve[J]. Marine Biology,2017,164(3):56. [102] JIANG WW, FANG J H, RASTRICK S P S, et al. CO2-induced ocean acidification alters the burrowing behavior of Manila clam Ruditapes philippinarum by reversing GABAA receptor function[J]. Environmental Science & Technology,2023,57(24):8921-8932. |
[1] |
宋德磊,李应东,曹延超,张洪艳,郭恩棉. 中华绒螯蟹神经系统及其胚后发育的组织学观察[J]. 水产科学, 2017, 36(2): 183-. |
[2] |
白雪峰,李海东,孙虎山. 分叉小猛水蚤消化和神经系统的组织学研究[J]. 水产科学, 2014, (9): 583-586. |
[3] |
叶维钧,陈亚瞿. 上海金山城市沙滩人工潟湖水体生态修复及效果评价[J]. 水产科学, 2014, (12): 844-849. |
[4] |
孟学平,申欣,赵娜娜,田美,郑立波,程汉良,阎斌伦,董志国. 双壳类线粒体基因组结构分析[J]. 水产科学, 2013, (12): 721-729. |
[5] |
陈淑吟,吉红九,张雪娜,朱立静. 西施舌线粒体COI与16S rRNA基因片段序列测定及其分析[J]. 水产科学, 2010, 29(8): 485-488. |
|
|
|
|