Characteristics and Protection Suggestions on Migratory Freshwater Fish in China: a Review
ZHANG Zhiming1,2, ZHANG Dongya3, CHEN Feng1, MA Baoshan4, GE Dexiang5, YANG Yang1, WEN Jingya5, XIONG Mantang1, WU Yajie6, ZOU Xi1
1. Key Laboratory of Ecological Impacts of Hydraulic-Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources, Institute of Hydroecology, Ministry of Water Resources and Chinese Academy of Sciences, Wuhan 430079, China; 2. Innovation Team of the Changjiang Water Resources Commission for River and Lake Ecosystem Restoration Key Technology, Wuhan 430079, China; 3. Power China Beijing Engineering Corporation Limited, Beijing 100024, China; 4. Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; 5. Environmental Engineering Assessment Center, Ministry of Ecology and Environment, Beijing 100041, China; 6. Huaneng Lancang River Hydropower Inc., Kunming 650000, China
[1] 殷名称.鱼类生态学[M].北京:中国农业出版社,1995:12-18. [2] JØRGENSEN C, ENBERG K, DUNLOP E S, et al. Ecology:managing evolving fish stocks[J]. Science,2007,318(5854):1247-1248. [3] CHILDRESS E S, MCINTYRE P B. Multiple nutrient subsidy pathways from a spawning migration of iteroparous fish[J]. Freshwater Biology, 2015,60(3):490-499. [4] 张志明,梁炆汉,杨洋,等.国家重点保护淡水鱼类特点及其保护建议[J].人民长江,2023,54(4):68-75. [5] SECOR D H. American eel:when does diversity matter?[J]. Fisheries,2015,40(9):462-463. [6] DEINET S, SCOTT G K, ROTTON H, et al. The Living Planet Index (LPI) for migratory freshwater fish: Technical Report[J]. World Fish Migration Foundation,2020,30:151-164. [7] International Union for Conservation of Nature. The IUCN Red List of Threatened Species. Version 2020-2 [EB/OL]. (2022-02-01)[2025-06-11]. https://www.iucnredlist.org. [8] ESCHMERYER W N, FONG J D. Species of fishes by family/subfamily [EB/OL]. (2024-11-05)[2025-06-11]. San Francisco: California Academy of Sciences. http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp. [9] 蒋志刚,张鹗,曹文宣.中国生物多样性红色名录 脊椎动物 第五卷 淡水鱼类[M].北京:科学出版社,2021:33-54. [10] 张玉玲.图们江马苏大麻哈鱼陆封型的生物学资料[J].水产科学,1988,7(4):1-5. [11] 张世义.中国动物志.硬骨鱼纲.鲟形目 海鲢目 鲱形目 鼠鱚目[M].北京:科学出版社,2001:31-35. [12] 姜志强,梁兆川,于向前,等.碧流河水库陆封型香鱼生物学特性的演变[J].中国水产科学,2001,8(2):36-39. [13] 史为良.辽东半岛发现陆封银鱼、陆封香鱼和洄游性公鱼[J].水产科学,1984,3(3):53. [14] LUTCAVAGE M E,BRILL R W, SKOMAL G B, et al. Results of pop-up satellite tagging of spawning size class fish in the Gulf of Maine:do North Atlantic bluefin tuna spawn in the mid-Atlantic?[J]. Canadian Journal of Fisheries and Aquatic Sciences,1999,56(2):173-177. [15] 罗毅平.鱼类洄游中的能量变化研究进展[J].水产科学,2012,31(6):375-381. [16] 刘文萍.鱼类的洄游[J].四川文物,1994(增刊):53-55. [17] TÉTARD S,MAIRE A, LEMAIRE M, et al. Behaviour of Atlantic salmon smolts approaching a bypass under light and dark conditions:importance of fish development[J]. Ecological Engineering,2019,131:39-52. [18] MCCORMICK S D, HANSEN L P, QUINN T P, et al. Movement, migration, and smolting of Atlantic salmon (Salmo salar)[J]. Canadian Journal of Fisheries and Aquatic Sciences,1998,55(S1):77-92. [19] PEAKE S, MCKINLEY R S. A re-evaluation of swimming performance in juvenile salmonids relative to downstream migration[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1998,55(3):682-687. [20] 张信,熊飞,唐红玉,等.青海湖裸鲤繁殖生物学研究[J].海洋水产研究,2005,26(3):61-67. [21] 余志堂,许蕴玕,邓中粦,等.葛洲坝水利枢纽下游中华鲟繁殖生态的研究[C]//中国鱼类学会.鱼类学论文集(第五辑).武汉:科学出版社,1986:1-14. [22] 陈细华.鲟形目鱼类生物学与资源现状[M].北京:海洋出版社,2007:16-19. [23] THORSTAD E B, ØKLAND F, AARESTRUP K, et al. Factors affecting the within-river spawning migration of Atlantic salmon, with emphasis on human impacts[J]. Reviews in Fish Biology and Fisheries,2008,18(4):345-371. [24] JENSEN A J, FINSTAD B, FISKE P, et al. Timing of smolt migration in sympatric populations of Atlantic salmon (Salmo salar), brown trout (Salmo trutta), and Arctic char (Salvelinus alpinus)[J]. Canadian Journal of Fisheries and Aquatic Sciences,2012,69(4):711-723. [25] 袁传宓.刀鲚的生殖洄游[J].生物学通报,1987,22(12):1-3. [26] 四川省长江水产资源调查组.长江鲟鱼类生物学及人工繁殖研究[M].成都:四川科学技术出版社,1988:12-18. [27] 陈大庆.青海湖裸鲤资源评估与繁殖群体遗传多样性[D].武汉:中国科学院水生生物研究所,2004. [28] JONSSON N,JONSSON B. Energy allocation among developmental stages, age groups, and types of Atlantic salmon (Salmo salar) spawners[J]. Canadian Journal of Fisheries and Aquatic Sciences,2003,60(5):506-516. [29] HINCH S G, RAND P S. Optimal swimming speeds and forward-assisted propulsion:energy-conserving behaviours of upriver-migrating adult salmon [J]. Canadian Journal of Fisheries and Aquatic Sciences,2000,57(12):2470-2478. [30] SLOTTE A, JOHANNESSEN A, KJESBU O S. Effects of fish size on spawning time in Norwegian spring-spawning herring[J]. Journal of Fish Biology,2000,56(2):295-310. [31] KIESSLING A, LINDAHL-KIESSLING K, KIESSLING K H. Energy utilization and metabolism in spawning migrating early stuart sockeye salmon (Oncorhynchus nerka):the migratory paradox[J]. Canadian Journal of Fisheries and Aquatic Sciences,2004,61(3):452-465. [32] BROWN C, LALAND 1 K N. Social learning in fishes:a review[J]. Fish and Fisheries,2003,4(3):280-288. [33] OGURA M, ISHIDA Y. Homing behavior and vertical movements of four species of Pacific salmon (Oncorhynchus spp. ) in the central Bering Sea[J]. Canadian Journal of Fisheries and Aquatic Sciences,1995,52(3):532-540. [34] WINDLE M J S, ROSE G A. Migration route familiarity and homing of transplanted Atlantic cod (Gadus morhua)[J]. Fisheries Research,2005,75(1/2/3):193-199. [35] ROBICHAUD D. The return of cod transplanted from a spawning ground in southern Newfoundland[J]. ICES Journal of Marine Science,2002,59(6):1285-1293. [36] DOCKER M. Bill beamish′s contributions to lamprey research and recent advances in the field[J]. Guelph Ichthyology Reviews,2006,7(1):1-52. [37] 王瑞芳,安晓萍,齐景伟,等.达里湖瓦氏雅罗鱼生殖洄游过程中能量代谢和消化酶活性的变化[J].中国水产科学,2019,26(4):703-712. [38] MOMMSEN T P, FRENCH C J, HOCHACHKA P W. Sites and patterns of protein and amino acid utilization during the spawning migration of salmon[J]. Canadian Journal of Zoology,1980,58(10):1785-1799. [39] MOMMSEN T P. Salmon spawning migration and muscle protein metabolism:the August Krogh principle at work[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2004,139(3):383-400. [40] LEONARD J B K, MCCORMICK S D. The effect of migration distance and timing on metabolic enzyme activity in an anadromous clupeid,the American shad (Alosa sapidissima)[J]. Fish Physiology and Biochemistry,1999,20(2):163-179. [41] 郭文君,杨彦平,马凤娇,等.长江刀鲚生殖洄游过程中血清能量指标变动[J].上海海洋大学学报,2022,31(2):462-470. [42] LUCAS M C, BARAS E, THOM T J, et al. Migration of Freshwater Fishes[M]. New York:John Wiley & Sons,2001. [43] QUINN T P. A review of homing and straying of wild and hatchery-produced salmon[J]. Fisheries Research,1993,18(1/2):29-44. [44] SIBBING F A, NAGELKERKE L A J. Resource partitioning by Lake Tana barbs predicted from fish morphometrics and prey characteristics[J]. Reviews in Fish Biology and Fisheries,2000,10(4):393-437. [45] BIRNIE-GAUVIN K, FLÁVIO H, KRISTENSEN M L, et al. Cortisol predicts migration timing and success in both Atlantic salmon and sea trout kelts[J]. Scientific Reports,2019,9(1):2422. [46] JONSSON B, JONSSON N. Ecology of Atlantic salmonand brown trout[J]. Fish & Fisheries Series,2011,33(1):247-325. [47] AUGUST S M, HICKS B J. Water temperature and upstream migration of glass eels in New Zealand:implications of climate change[J]. Environmental Biology of Fishes,2008,81(2):195-205. [48] TEICHERT N, BENITEZ J P, DIERCKX A, et al. Development of an accurate model to predict the phenology of Atlantic salmon smolt spring migration[J]. Aquatic Conservation:Marine and Freshwater Ecosystems,2020,30(8):1552-1565. [49] HINCH S G, STANDEN E M, HEALEY M C, et al. Swimming patterns and behaviour of upriver-migrating adult pink (Oncorhynchus gorbuscha) and sockeye (O. nerka) salmon as assessed by EMG telemetry in the Fraser River, British Columbia, Canada[J]. Hydrobiologia,2002,483(1):147-160. [50] HARVEY A C, GLOVER K A, WENNEVIK V, et al. Atlantic salmon and sea trout display synchronised smolt migration relative to linked environmental cues[J]. Scientific Reports,2020,10(1):3529. [51] GROSS T F, WILLIAMS A J III, NEWELL A R M. A deep-sea sediment transport storm[J]. Nature,1988,331(6156):518-521. [52] LENNOX R J, PAUKERT C P, AARESTRUP K, et al. One hundred pressing questions on the future of global fish migration science, conservation, and policy[J]. Frontiers in Ecology and Evolution,2019,7:286. [53] CORNWALL W. After the flood[J]. Science,2023,382(6668):254-259. [54] 丁鹏,邹晓荣,冯超,等.东南太平洋智利竹筴鱼的洄游路线[J].大连海洋大学学报,2021,36(6):1027-1034. [55] DING C Z, SUN J, HUANG M R, et al.Flow and thermal regimes altered by a dam caused failure of fish recruitment in the upper Mekong River[J]. Freshwater Biology,2023,68(8):1319-1329. [56] McFARLANE G A, WYDOSKI R S, PRINCE E D. Historical review of the development of external tags and marks[J]. American Fisheries Society Symposium, 1990, 7: 9-29. [57] 马金,田思泉,陈新军.水生动物洄游分布研究方法综述[J].水产学报,2019,43(7):1678-1690. [58] 张堂林,李钟杰,舒少武.鱼类标志技术的研究进展[J].中国水产科学,2003,10(3):246-253. [59] 邵金辉,许增禄.鱼鳍的再生[J].生命的化学,2009,29(2):265-267. [60] 胡金城,孙劲峰,邢克智.鱼类标志放流技术研究现状[J].齐鲁渔业,2016,33(4):47-50. [61] 吴川,朱佳志,苏巍,等.弹出式卫星标记在海洋动物分布与迁移研究中的应用[J].水产学杂志,2022,35(2):108-116. [62] SÁNCHEZ-LAMADRID A. Effectiveness of four methods for tagging juveniles of farm-reared gilthead sea bream, Sparus aurata, L[J]. Fisheries Management and Ecology,2001,8(3):271-278. [63] 陈锦淘,戴小杰.鱼类标志放流技术的研究现状[J].上海水产大学学报,2005,14(4):451-456. [64] RILEY W D, IBBOTSON A T, BEAUMONT W R C, et al. A portable, cost effective, pass-through system to detect downstream migrating salmonids marked with 12mm passive integrated transponder tags[J]. Fisheries Research,2010,101(3):203-206. [65] FICKE A D, MYRICK C A, KONDRATIEFF M C. The effects of PIT tagging on the swimming performance and survival of three nonsalmonid freshwater fishes[J]. Ecological Engineering,2012,48:86-91. [66] NILSSON J, FOLKEDAL O, FOSSEIDENGEN J E, et al. PIT tagged individual Atlantic salmon registrered at static depth positions in a sea cage:vertical size stratification and implications for fish sampling[J]. Aquacultural Engineering,2013,55:32-36. [67] METRIO G D, ARNOLD G P, SERNA J M D L, et al. Further results of tagging Mediterranean bluefin tuna with pop up satellite detected tags[J]. Collection Volume Science Paper ICCAT, 2001, 52(2): 776-783. [68] SIBERT J R, LUTCAVAGE M E, NIELSEN A, et al. Interannual variation in large-scale movement of Atlantic bluefin tuna (Thunnus thynnus) determined from pop-up satellite archival tags[J]. Canadian Journal of Fisheries and Aquatic Sciences,2006,63(10):2154-2166. [69] MANABE R, AOYAMA J, WATANABE K, et al. First observations of the oceanic migration of Japanese eel, from pop-up archival transmitting tags[J]. Marine Ecology Progress Series,2011,437:229-240. [70] TREFETHEN P S. Sonic equipment for tracking individual fish [J]. Special Scientific Report Fisheries,1956,179:1-11. [71] 危起伟,杨德国,柯福恩.长江中华鲟超声波遥测技术[J].水产学报,1998,22(3):211-217. [72] 林永兵.非繁殖季节中华鲟繁殖群体在长江中分布与降海洄游初步研究[D].武汉:华中农业大学,2008. [73] 刘景,汤勇,邢彬彬,等.超声波生物遥测技术及其在现代渔业中的应用[J].渔业现代化,2018,45(5):75-80. [74] STIER D J, KYNARD B. Use of radio telemetry to determine the mortality of Atlantic salmon smolts passed through a 17-MW kaplan turbine at a low-head hydroelectric dam[J]. Transactions of the American Fisheries Society,1986,115(5):771-775. [75] 王成友,危起伟,杜浩,等.超声波遥测在水生动物生态学研究中的应用[J].生态学杂志,2010,29(11):2286-2292. [76] SCHMIDT J. The breeding places of the eel[J]. Philosophical Transactions of the Royal Society of London Series B:Containing Papers of a Biological Character,1923,211(382/383/384/385/386/387/388/389/390):179-208. [77] 徐兆礼,陈佳杰.小黄鱼洄游路线分析[J].中国水产科学,2009,16(6):931-940. [78] LUCAS M C, BARAS E. Methods for studying spatial behaviour of freshwater fishes in the natural environment[J]. Fish and Fisheries,2000,1(4):283-316. [79] 王成友.长江中华鲟生殖洄游和栖息地选择[D].武汉:华中农业大学,2012. [80] 李文祥,王桂堂.洄游型、淡水型和陆封型刀鲚的寄生蠕虫群落结构[J].动物学杂志,2014,49(2):233-243. [81] LI W X, SONG R, WU S, et al. Seasonal occurrence of helminths in the anadromous fish Coilia nasus (Engraulidae):parasite indicators of fish migratory movements[J]. The Journal of Parasitology,2011,97(2):192-196. [82] ELSDON T S, GILLANDERS B M. Interactive effects of temperature and salinity on otolith chemistry:challenges for determining environmental histories of fish[J]. Canadian Journal of Fisheries and Aquatic Sciences,2002,59(11):1796-1808. [83] ARKHIPKIN A I, BIZIKOV V A. Role of the statolith in functioning of the acceleration receptor system in squids and sepioids[J]. Journal of Zoology,2000,250(1):31-55. [84] STURROCK A M, TRUEMAN C N, DARNAUDE A M, et al. Can otolith elemental chemistry retrospectively track migrations in fully marine fishes?[J]. Journal of Fish Biology,2012,81(2):766-795. [85] ELSDON T S, WELLS B K, CAMPANA S E, et al. Otolith chemistry to describe movements and life-history parameters of fishes:hypotheses, assumptions, limitations and inferences[J]. Oceanography and Marine Biology,2008,46:297-330. [86] 姜涛.基于耳石形态和微化学特征的我国鲚属鱼类洄游生态学研究[D].南京:南京农业大学,2014. [87] 陈婷婷,姜涛,卢明杰,等.基于耳石微化学的长江靖江段长颌鲚与短颌鲚生境履历重建[J].湖泊科学,2016,28(1):149-155. [88] BENCHETRIT J,BÉGUER-PON M, SIROIS P, et al. Using otolith microchemistry to reconstruct habitat use of American eels Anguilla rostrata in the St. Lawrence River-Lake Ontario system[J]. Ecology of Freshwater Fish,2017,26(1):19-33. [89] 王继隆,刘伟,王臣,等.基于耳石微化学的乌苏里白鲑生境履历分析[J].水生生物学报,2019,43(4):825-831. [90] ARAI T. Evidence of different habitat use by New Zealand freshwater eels Anguilla australis and A. diffenbachii, as revealed by otolith microchemistry[J]. Marine Ecology Progress, 2004, 266(1): 213-225. [91] 周玲.青海湖裸鲤耳石微化学组成及环境示踪[D].西安:中国科学院研究生院(地球环境研究所),2015. [92] 张健,杨培民,姜涛,等.基于耳石微化学的大洋河刀鲚生境履历研究[J].水生生物学报,2024,48(1):130-137. [93] 张江栋.基于多组织微化学分析的日本鲭太平洋群体摄食及洄游初步研究[D].上海:上海海洋大学,2023. [94] 高春霞,黄慧娴,赵静,等.耳石微化学技术在鱼类生境履历重建中的研究进展[J].水产科学,2024,43(1):163-172. [95] GROSSMAN E L, KU T L. Oxygen and carbon isotope fractionation in biogenic aragonite:temperature effects[J]. Chemical Geology:Isotope Geoscience Section,1986,59:59-74. [96] STEPHENSON P. Analysis of stable isotope ratios to investigate stock structure of red emperor and Rankin cod in northern Western Australia[J]. Journal of Fish Biology,2001,58(1):126-144. [97] 李忠义,金显仕,庄志猛,等.稳定同位素技术在水域生态系统研究中的应用[J].生态学报,2005,25(11):3052-3060. [98] WALTHER B D, THORROLD S R, OLNEY J E. Geochemical signatures in otoliths record natal origins of American shad[J]. Transactions of the American Fisheries Society,2008,137(1):57-69. [99] 周玲,金章东,WILLIAMS Ian S,等.青海湖裸鲤耳石轮纹O-Sr同位素组成及对其洄游行为的指示[J].科学通报,2016,61(6):668-675. [100] ZANNELLA C, ADAMO P, OPPER C, et al. Isotopic and elemental analysis of fish tissues for provenance determination[C]//Proceedings of the 19th EGU General Assembly Conference. EGU General Assembly Conference Abstracts. Vienna: EGU, 2017: 19. [101] MOUTON A M, SCHNEIDER M, PETER A, et al. Optimisation of a fuzzy physical habitat model for spawning European grayling (Thymallus thymallus L. ) in the Aare river (Thun, Switzerland)[J]. Ecological Modelling,2008,215(1/2/3):122-132. [102] 刘芳,李晟,李迪强.利用分布有/无数据预测物种空间分布的研究方法综述[J].生态学报,2013,33(22):7047-7057. [103] FUKUDA S, DE BAETS B, WAEGEMAN W, et al. Habitat prediction and knowledge extraction for spawning European grayling (Thymallus thymallus L. ) using a broad range of species distribution models[J]. Environmental Modelling & Software,2013,47:1-6. [104] 程懿麒.基于机器学习的中西太平洋长鳍金枪鱼栖息地时空分布模型的构建和评价[D].上海:上海海洋大学,2022. [105] 杨晓龙,杨超杰,胡成业,等.物种分布模型在海洋潜在生境预测的应用研究进展[J].应用生态学报,2017,28(6):2063-2072. [106] SYDEMAN W J, BRODEUR R D, GRIMES C B, et al. Marine habitat “hotspots” and their use by migratory species and top predators in the North Pacific Ocean:introduction[J]. Deep Sea Research Part II:Topical Studies in Oceanography,2006,53(3/4):247-249.