Realized Heritability of F2 Hybrid Breeding Line of Bay Scallop Argopecten irradians concentricus
LU Yining1, ZHAN Jianqiang1, SI Zhiheng2, LI Teng1, ZHANG Yuan1, ZHANG Kexin1, FANG James Karhei3, LIU Zhigang1,4
1. College of Fisheries,Guangdong Ocean University,Zhanjiang 524088, China; 2. Agro-Tech Extension Center of Guangdong Province, Guangzhou 510000, China; 3. Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong 999077, China; 4. Guangdong Marine Invertebrate Science and Technology Innovation Center, Zhanjiang 524088, China
Abstract:To evaluate the breeding effect of a fast-growing selective breeding line with black and white shell color between the wild population of Argopecten irradians concentricus and the orthocross offspring of the scallop “Bohai Red”, the breeding line F1 was obtained using the breeding strategy of black and white shell color as the first choice and 5% of the maximum shell length as the second selection in the orthocross generation, and then the “F2 selection line” was obtained using the same method. “F2 non-selection line” was used as a control to probe into the “F2 selection line” contemporary genetic gain and the realized heritability of various economic traits. The results showed that growth traits of the “F2 selection line” generation were significantly better than those of the “F2non-Selected” generation (P<0.05), even though without significant difference in the survival rate of the “F2 selection line” generation compared with that of the “F2 non-selected” generation. The contemporary genetic gains were shown to be 8.29%in shell length, 6.65% in shell height, 10.26% in shell width, 20.72% in body weight, 33.98% in adductor weight and 25.91% in soft tissue weight, with the coefficients of variation to be 7.01% in shell length, 8.46% in shell height, 8.50% in shell width, 14.80% in body weight, 26.32% in adductor weight and 15.98% in soft tissue weight, and from 0.41 to 0.47 for the realized heritability of each growth trait of the selected breeding lines, showing high heritability. Shell-length selection on the cross-selected generation F1 led to bring significant genetic progress, with the significant selection effect, and greater potential for continued selection in the “F2 selection line”. The findings provide basis for further selection of selective lines.
[1] 彭张明,刘付少梅,刘志刚.墨西哥湾扇贝人工养殖及遗传育种研究进展[J].广东海洋大学学报,2014,34(1):91-97. [2] 刘志刚,王辉,郑云龙.墨西哥湾扇贝亲代选择对自交子一代的影响[J].水产学报,2007,31(4):443-451. [3] 王春德,刘博,马斌,等.扇贝“渤海红”[J].中国水产,2016(8):72-77. [4] WANG C D, LIU B, LIU X, et al .Selection of a new scallop strain,the Bohai Red, from the hybrid between the bay scallop and the Peruvian scallop[J]. Aquaculture,2017,479:250-255. [5] 姚高友.墨西哥湾扇贝杂交育种及杂交子代高温耐受性与遗传特征分析[D].湛江:广东海洋大学,2019. [6] 刘志刚,王辉,栗志民,等.墨西哥湾扇贝高起始致死温度的研究[J].中国水产科学,2007,14(5):778-785. [7] 张守都.海湾扇贝的选择和杂交育种[D].青岛:中国科学院研究生院(海洋研究所),2013. [8] 盛志廉,陈瑶生.数量遗传学[M].北京:科学出版社,2001:173-178. [9] 封杰,赵乃乾,郑宇辰,等.墨西哥湾扇贝选育系早期发育与生长[J].中国水产科学,2018,25(2):336-345. [10] 彭张明.墨西哥湾扇贝新品系的选择育种及养殖[D].湛江:广东海洋大学,2015. [11] 黄亚楠,王文杰,魏钰恒,等.墨西哥湾扇贝(Argopecten irradians concentricus)选育系F7在广西北部湾海域的生长比较研究[J].海洋与湖沼,2020,51(5):1222-1231. [12] 莫日馆,肖述,秦艳平,等.深凹壳型香港牡蛎选育群体生长性状的遗传参数估计[J].水产学报,2020,44(1):33-42. [13] 王庆志,李琪,孔令锋,等.长牡蛎第三代选育群体生长性状的选择效应[J].水产学报,2013,37(10):1487-1494. [14] 吴杨平,陈爱华,张雨,等.文蛤红壳色选育系G5的生长优势及选择效应分析[J].海洋渔业,2022,44(3):340-349. [15] 李炼星,李浩,杜文俊,等.缢蛏选育系F5的生长优势比较及育种效应分析[J].中国水产科学,2017,24(1):50-56. [16] 杨创业,吴丹阳,王庆恒,等.马氏珠母贝生长性状遗传力估计[J].中国农学通报,2015,31(23):25-29. [17] 郭奕惠,刘宝锁,范嗣刚,等.合浦珠母贝选育组和对照组生长性状相关分析[J].上海海洋大学学报,2017,26(2):212-220. [18] 葛建龙,李琪,于红,等.长牡蛎壳金选育群体生长性状的选择效应[J].水产学报,2016,40(4):612-617. [19] 蒋湘,郑静静,谢妙,等.日本囊对虾耐高氨氮与生长性状的遗传参数估计[J].水产科学,2017,36(6):700-706. [20] 李玉龙,张伟杰,田梅琳,等.海蜇幼蜇生长性状的遗传力估计及相关性分析[J].水产科学,2023,42(4):698-704. [21] IBARRA A M, RAMIREZ J L, RUIZ C A, et al. Realized heritabilities and genetic correlation after dual selection for total weight and shell width in Catarina scallop (Argopecten ventricosus)[J]. Aquaculture,1999,175(3/4):227-241. [22] MA H T, YU D M, QIN Y P, et al. Growth-related phenotypic and genetic diversity analysis of successive mass selected generations of Kumamoto oyster (Crassostrea sikamea)[J]. Aquaculture Reports,2023,30:101621. [23] HADLEY N H, DILLON R T, MANZI J J. Realized heritability of growth rate in the hard clam Mercenaria mercenaria[J]. Aquaculture,1991,93(2):109-119. [24] 聂振平,彭慧婧,邹杰,等.钝缀锦蛤选育群体F2生长性状相关性及遗传力分析[J].广西科学,2020,27(3):241-247. [25] 祁剑飞,巫旗生,宁岳,等.菲律宾蛤仔选育群体幼虫和稚贝生长性状的选择响应[J].渔业研究,2019,41(5):418-423. [26] 方佳峰,李琪.长牡蛎壳橙品系幼虫和稚贝的生长性状遗传参数评估[J].中国海洋大学学报(自然科学版),2020,50(11):38-44. [27] 王清印.水产生物育种理论与实践[M].北京:科学出版社,2013:21-35. [28] 孙龙芳,李姣,梁旭方,等.翘嘴鳜F3~F5群体选育效果分析[J].广东农业科学,2014,41(13):114-118. [29] LIU J Y, LAI Z F, FU X L, et al. Genetic parameters and selection responses for growth and survival of the small abalone Haliotis diversicolor after four generations of successive selection[J]. Aquaculture,2015,436:58-64. [30] 马爱军,王新安,黄智慧,等.大菱鲆(Scophthalmus maximus)家系选育F2早期选择反应和现实遗传力估计[J].海洋与湖沼,2012,43(1):57-61. [31] GJEDREM T. Genetic improvement of cold-water fish species[J]. Aquaculture Research,2000,31(1):25-33. [32] SUN C F, DONG J J, LI W H, et al. Response to four generations of selection for growth performance traits in mandarin fish (Siniperca chuatsi)[J]. Aquaculture,2022,548:737590. [33] HU Y M, LI Q, XU C X, et al. Response to selection for growth in successive mass selected generations of Iwagaki oyster Crassostrea nippona[J]. Aquaculture,2022,560:738575. [34] BENTSEN H B, GJERDE B, EKNATH A E, et al. Genetic improvement of farmed tilapias:response to five generations of selection for increased body weight at harvest in Oreochromis niloticus and the further impact of the project[J]. Aquaculture,2017,468:206-217. [35] 袁瑞鹏,刘建勇,张嘉晨,等.凡纳滨对虾生长与高氨氮耐受性的遗传力及选择反应研究[J].南方水产科学,2017,13(3):83-89.