Abstract:Grass carp (Ctenopharyngodon idellus) with body weight of (110.23±0.43) g was reared in a covered net cage (3 m×2 m×1.2 m) at water temperature of 25—30 ℃ and fed diets containing Bacillus, Lactobacillus, and Saccharomyces probiotics (8.0×109 cfu/g) at a dose of 0% (control group), 0.5% and 2% for 60 days to investigate the effects of probiotics on the intestinal structure, flora and enzyme activities of grass carp. It was found that there were significant increase in weight gain rate and specific growth rate and significant decrease in ratio of viscera to body weight and food conversion ratio in the grass carp fed the diet containing 2% of probiotics (P<0.05). There were significantly increase in intestinal extension rate, midgut muscle layer thickness, and villus height and the activities of midgut amylase and lipase in the grass carp fed the diet containing 2% of probiotics (P<0.05). Increase in diversity, and abundance in intestinal flora and composition of intestinal microorganisms was observed in the grass carp fed the diets containing different proportions of probiotics. At the phylum level, the maximal contents of Clostridium (63.56%) and Firmicutes (32.52%) were found in grass carp in the control group, and the maximal contents of clostridium (61.82%) and firmicutes (20.27%) in the intestinal microorganisms in grass carp in the 0.5% group, with the maximal content of firmicutes(64.20%) in 2% group. At the genus level, the dominant bacteria in the intestinal tract of grass carp in the 2% group were directly changed, and the abundance of Paeniclostridium and Erysipelatoclostridium was increased significantly. The metabolic function of intestinal microorganisms was enhanced, and the abundance of bacteria related to the functions of inorganic ion transport and metabolism, carbohydrate transport and metabolism, and amino acid transport and metabolism was increased with the increase in the dose of the probiotics. It can be concluded that supplementation of probiotics composed of Bacillus, Lactobacillus and Saccharomyces in the feed can be an important measure to produce green feed for grass carp.
[1]Newbold C J, Wallace R J, McIntosh F M. Mode of action of the yeast Saccharomyces cerevisiae as a feed additive for ruminants[J]. British Journal of Nutrition,1996,76(2):249-261. [2]Douillet P A, Langdon C J. Use of a probiotic for the culture of larvae of the Pacific oyster (Crassostrea gigas Thunberg)[J]. Aquaculture,1994,119(1):25-40. [3]Devaraja T N, Yusoff F M, Shariff M. Changes in bacterial populations and shrimp production in ponds treated with commercial microbial products[J]. Aquaculture,2002,206(3/4):245-256. [4]Wu Z Q, Jiang C, Ling F,et al. Effects of dietary supplementation of intestinal autochthonous bacteria on the innate immunity and disease resistance of grass carp (Ctenopharyngodon idellus)[J]. Aquaculture, 2015,438:105-114. [5]罗辉,李俊波,刘立鹤,等. 3 种微生态制剂对鲤鱼生产性能和体成分的影响[J]. 水产科学,2010,29(6):360-362. [6]管越强,周环,张磊,等. 枯草芽孢杆菌对中华鳖生长性能、消化酶活性和血液生化指标的影响[J]. 动物营养学报,2010,22(1):235-240. [7]江永明,付天玺,张丽,等. 微生物制剂对奥尼罗非鱼生长及消化酶活性的影响[J]. 水生生物学报,2011,35(6):998-1004. [8]吴定心. 微生物制剂对南美白对虾养殖体系微生态的影响及其与藻类关系的研究[D]. 武汉:华中农业大学,2016. [9]Gomez-Gil B, Roque A, Turnbull J F. The use and selection of probiotic bacteria for use in the culture of larval aquatic organisms[J]. Aquaculture,2000,191(1/2):259-270. [10]Li K, Zheng T L, Tian Y, et al. Beneficial effects of Bacillus licheniformis on the intestinal microflora and immunity of the white shrimp, Litopenaeus vannamei[J].Biotechnology Letters,2007,29(4):525-530. [11]黄玉婷,彭众,王梦芝,等. 益生菌制剂的调控机制及其在动物养殖生产中的应用[J]. 中国饲料,2018(17):5-10. [12]Wang Y. Use of probiotics Bacillus coagulans, Rhodopseudomonas palustris and Lactobacillus acidophilus as growth promoters in grass carp (Ctenopharyngodon idella) fingerlings[J]. Aquaculture Nutrition, 2015,17(2):e372-e378. [13]陈玉春,李光,赵倩,等. 复合微生态制剂对草鱼鱼种期生长指标及抗病力的影响[J]. 饲料与畜牧,2013(6):44-46. [14]尹惠霖. 纳豆芽孢杆菌对草鱼幼鱼生理生化指标和肠道功能的影响[D]. 长沙:湖南农业大学,2014. [15]何伟聪. 二种益生菌对军曹鱼幼鱼生长性能、免疫酶和消化酶活性、肠道菌群结构及TLR9基因表达量的影响[D]. 湛江:广东海洋大学,2015. [16]李明. 混合益生菌对刺参生长、免疫、消化和肠道菌群的影响[D]. 大连:大连海洋大学,2012. [17]高凤祥,郭文,潘雷,等. 几种益生菌对大菱鲆幼鱼生长及消化酶活性的影响[J]. 海洋科学,2011,35(1):10-16. [18]乔志刚,张卫芳,马龙. 2种微生态制剂对淇河鲫幼鱼摄食、生长和体成分的影响[J].水产科学,2015,34(1):26-31. [19]张雯,钟雷,李南充,等. 微生态制剂对池养建鲤体成分、血清指标、消化酶活性以及肠道菌群组成的影响[J]. 水产科学,2015,34(12):741-749. [20]Hamlin H J, Herbing I H V, Kling L J. Histological and morphological evaluations of the digestive tract and associated organs of haddock throughout post-hatching ontogeny[J]. Journal of Fish Biology,2010,57(3):716-732. [21]Cheng Z, Dmi G, Buentello A. Dietary supplementation of arginine and/or glutamine influences growth performance, immune responses and intestinal morphology of hybrid striped bass (Morone chrysops×Morone saxatilis)[J]. Aquaculture,2012(362/363):39-43. [22]黄灿,张忠海,吴淑勤,等. 益生芽孢杆菌对草鱼肠黏膜结构的保护作用[J]. 水生生物学报,2017,41(4):774-780. [23]邱燕. 三种微生态制剂对草鱼(Ctenopharyngodon idellus)生长性能、生理机能及肠道黏膜的影响[D]. 苏州:苏州大学,2010. [24]Sögaard H, Suhrjessen T. Microbials for feed:beyond lactic acid bacteria[J]. Feed International,1990,11(4):32-37. [25]王子彦,何明清,陈孝跃,等. 鱼微生物饲料添加剂在不同营养水平下对鱼的促生长研究[J]. 四川农业大学学报,1994,13(增刊):658-661,634. [26]Tran N T, Wang G, Wu S. A review of intestinal microbes in grass carp Ctenopharyngodon idellus (Valenciennes)[J]. Aquaculture Research,2017,48(7):3287-3297. [27]Li H, Wu S, Wirth S, et al. Diversity and activity of cellulolytic bacteria, isolated from the gut contents of grass carp (Ctenopharyngodon idellus) (Valenciennes) fed on Sudan grass (Sorghum sudanense) or artificial feedstuffs[J]. Aquaculture Research,2016,47(1):153-164. [28]Wu S, Wang G, Angert E R, et al. Composition, diversity, and origin of the bacterial community in grass carp intestine[J]. PLoS One,2012,7(2):e30440. [29]Koren O, Spor A, Felin J, et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis[J]. Proc Natl Acad Sci U S A, 2011,108(Suppl. 1):4592-4598. [30]李东亮. 感染嗜水气单胞菌草鱼肠道菌群结构研究[D]. 杨凌:西北农林科技大学,2016. [31]Nguyen T T T, Fujimura Y, Mimura I, et al. Cultivable butyrate-producing bacteria of elderly Japanese diagnosed with Alzheimer′s disease[J]. Journal of Microbiology,2018,56(10):760-771. [32]Pozuelo M, Panda S, Santiago A, et al. Reduction of butyrate- and methane-producing microorganisms in patients with Irritable Bowel Syndrome[J]. Scientific Reports,2015,5:12693. [33]田莉. 丁酸钠对草鱼肠道、鳃和机体健康及肌肉品质的作用及其机制[D]. 雅安:四川农业大学,2017. [34]Fukuda S, Toh H, Hase K, et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate[J]. Nature,2012,469(5):543-547. [35]Woting A, Pfeiffer N, Loh G, et al. Clostridium ramosum promotes high-fat diet-induced obesity in gnotobiotic mouse models[J]. Mbio,2014,5(5):e01530. [36]Yutin N, Galperin M Y. A genomic update on clostridial phylogeny:gram-negative spore formers and other misplaced clostridia[J]. Environmental Microbiology,2013,15(10):2631-2641. [37]Wu S, Ren Y, Peng C, et al.Metatranscriptomic discovery of plant biomass-degrading capacity from grass carp intestinal microbiomes[J]. Fems Microbiology Ecology,2015,91(10):370-372.