Abstract:A feeding experiment was conducted to investigate the effects of probiotics on growth, digestive enzyme activity and immune defense factors of sea cucumber Apostichopus japonicus. The Bacillus licheniformi isolated from the intestines of sea cucumber was identified as the strain of potential probiotics. Sea cucumber with an initial body weight of (7.17±0.86) g was fed a control diet or a diet supplemented with probiotics containing B. licheniformis. The additive does of living Bacillus cell in feed were 105, 107, 109, and 1011 cfu/g and the relevant indices were determined every ten days. After 40 days of feeding with B. licheniformis-diets or control diet, live Vibrio splendidus was injected into the body wall of sea cucumber to conduct the challenge test. Results showed the sea cucumber fed diet with 105 and 1011 cfu/g B. licheniformis had no significant difference growth, digestive enzyme activity and immune defense factors compared with the control. Added viable B. licheniformis with the concentration of 107, 109 cfu/g into the feed not only promoted the weight gain rate(WGR) and specific growth rate(SGR), but also significantly improved the digestive enzyme activity, such as activities of trypsin(TRY), lipase(LPS) and amylase(AMS), besides the immune defense factors, activities of acid phosphatase(ACP), alkaline phosphatase(AKP), super-oxide dismutase(SOD) and lysozyme(LZM) were also increased significantly compared with the control. Most indices mentioned above were increased continually during the whole study other than the activities of AMS and SOD of sea cucumbers were increased initially and then decreased. The challenge test showed that sea cucumbers fed the diet either with 107 or 109 cfu/g B. licheniformis had lower cumulative mortality rate(CMR) and higher relative percent survival(RPS), and had a potential of enhancing the disease resistance against V. splendidus compared with controls. The findings indicated that when the supplemental level of B. licheniformis in diets at the doses of 107 and 109 cfu/g, the growth, digestion and immune function of sea cucumber were promoted effectively.
[1]朱厚祥,孔令锋,李琪,等.盐度、温度和培育密度对白刺参幼虫生长及存活的影响[J].中国海洋大学学报(自然科学版),2013,43(7):34-39. [2]崔惠敬,耿慧君,王丽丽,等.噬菌体治疗海水养殖动物常见细菌性疾病的研究进展[J].国外医药(抗生素分册),2019,40(5):445-450. [3]Li Z, Zhang J C, Li X Y, et al. Efficiency of a bacteriophage in controlling Vibrio infection in the juvenile sea cucumber Apostichopus japonicus[J].Aquaculture,2016,451:345-352. [4]王光玉,冯亚利,张欣,等.微生态制剂对刺参养殖的影响[J].饲料工业,2017,38(14):29-34. [5]游龙,韩茵,张凯,等.芽孢杆菌产胞外酶的活性分析及其对凡纳滨对虾的作用[J].中国海洋大学学报(自然科学版),2018,48(3):80-87. [6]Al-Fataftah A R, Abdelqader A. Effects of dietary Bacillus subtilis on heat-stressed broilers performance,intestinal morphology and microflora composition[J].Animal Feed Science and Technology,2014,198:279-285. [7]Lee K W, Kim D K, Lillehoj H S, et al. Immune modulation by Bacillus subtilis-based direct-fed microbials in commercial broiler chickens[J].Animal Feed Science and Technology,2015,200:76-85. [8]董春光,杨爱国,孙秀俊,等.枯草芽孢杆菌(Bacillus subtilis)在刺参养殖中的益生作用[J].渔业科学进展,2015,36(3):109-115. [9]Zokaeifar H, Babaei N, Saad C R, et al. Administration of Bacillus subtilis strains in the rearing water enhances the water quality,growth performance,immune response,and resistance against Vibrio harveyi infection in juvenile white shrimp, Litopenaeus vannamei[J].Fish & Shellfish Immunology,2014,36(1):68-74. [10]Abdhul K, Ganesh M, Shanmughapriya S, et al. Bacteriocinogenic potential of a probiotic strain Bacillus coagulans [BDU3] from Ngari[J].International Journal of Biological Macromolecules,2015,79:800-806. [11]Wang H L, Shi M, Xu X, et al. Effects of flavomycin,Bacillus licheniformis and enramycin on performance,nutrient digestibility,gut morphology and the intestinal microflora of broilers[J].The Journal of Poultry Science,2016,53(2):128-135. [12]Yang J J, Qian K, Wu D, et al. Effects of different proportions of two Bacillus sp. on the growth performance,small intestinal morphology,caecal microbiota and plasma biochemical profile of Chinese Huainan Partridge Shank chickens[J].Journal of Integrative Agriculture,2017,16(6):1383-1392. [13]Wang Y, Du W, Lei K, et al. Effects of dietary Bacillus licheniformis on gut physical barrier,immunity,and reproductive hormones of laying hens[J].Probiotics and Antimicrobial Proteins,2017,9(3):292-299. [14]Zong X, Wang T H, Lu Z Q, et al. Effects of Clostridium butyricum or in combination with Bacillus licheniformis on the growth performance, blood indexes,and intestinal barrier function of weanling piglets[J].Livestock Science,2019,220:137-142. [15]Zhu C, Wu Y P, Jiang Z Y, et al. Dietary soy isoflavone attenuated growth performance and intestinal barrier functions in weaned piglets challenged with lipopolysaccharide[J].International Immunopharmacology,2015,28(1):288-294. [16]Lan R X, Tran H, Kim I. Effects of probiotic supplementation in different nutrient density diets on growth performance, nutrient digestibility, blood profiles, fecal microflora and noxious gas emission in weaning pig[J].Journal of the Science of Food and Agriculture,2017,97(4):1335-1341. [17]安红红,张华威,宫向红,等.喹烯酮对刺参幼参生长、非特异性免疫及抗应激能力的影响[J].中国海洋大学学报(自然科学版),2015,45(3):67-72. [18]邵长清,高勤峰,董双林,等.不同浓度的过碳酰胺对刺参生长及养殖底质环境的影响[J].中国海洋大学学报(自然科学版),2017,47(8):51-57. [19]韩莎,胡炜,李成林,等.饲料中添加微生态制剂对仿刺参生长、消化和免疫功能的影响[J].动物营养学报,2019,31(6):2800-2806. [20]杨宁,郭中帅,王正丽.饲料中添加浒苔对仿刺参幼参生长、消化酶活性和免疫力的影响[J].水产科学,2016,35(5):498-503. [21]丁贤,李卓佳,陈永青,等.芽孢杆菌对凡纳对虾生长和消化酶活性的影响[J].中国水产科学,2004,11(6):580-584. [22]于明超,李卓佳,林黑着,等.饲料中添加芽孢杆菌和中草药制剂对凡纳滨对虾生长及肠道菌群的影响[J].热带海洋学报,2010,29(4):132-137. [23]张宇鹏,田燚,商艳鹏,等.复合免疫增强剂对刺参生长和非特异性免疫酶活性的影响[J].大连海洋大学学报,2017,32(2):178-183. [24]Yang G, Tian X L, Dong S L, et al. Effects of dietary Bacillus cereus G19,B. cereus BC-01,and Paracoccus marcusii DB11 supplementation on the growth,immune response,and expression of immune-related genes in coelomocytes and intestine of the sea cucumber (Apostichopus japonicus Selenka)[J].Fish & Shellfish Immunology,2015,45(2):800-807. [25]NavinChandran M, Iyapparaj P, Moovendhan S, et al. Influence of probiotic bacterium Bacillus cereus isolated from the gut of wild shrimp Penaeus monodon in turn as a potent growth promoter and immune enhancer in P. monodon[J].Fish & Shellfish Immunology,2014,36(1):38-45. [26]包鹏云,李璐瑶,陈炜,等.饲料中添加混合益生菌对幼参生长、消化酶活力和体壁营养组成的影响[J].大连海洋大学学报,2018,33(1):52-56. [27]朱学芝,郑石轩,潘庆军,等.芽孢杆菌对凡纳滨对虾免疫和生化指标的影响[J].饲料研究,2007(4):56-59. [28]文国樑,于明超,李卓佳,等.饲料中添加芽孢杆菌和中草药制剂对凡纳滨对虾免疫功能的影响[J].上海海洋大学学报,2009,18(2):181-186. [29]谷笑笑,王振华,潘康成.益生芽孢杆菌对动物免疫功能影响研究进展[J].微生物学通报,2016,43(9):2079-2085. [30]王印庚,方波,张春运,等.养殖刺参保苗期重大疾病“腐皮综合征”病原及其感染源分析[J].中国水产科学,2006,13(4):610-616. [31]严芳,胡炜,李成林,等.饲料中添加活性酵母制剂对刺参生长、免疫力和抗病力的影响[J].动物营养学报,2017,29(2):583-589. [32]周慧慧,马洪明,张文兵,等.仿刺参肠道潜在益生菌对稚参生长、免疫及抗病力的影响[J].水产学报,2010,34(6):955-963. [33]王金燕,李彬,王印庚,等.刺参养殖池塘一株贝莱斯芽孢杆菌的分离及其生理特性[J].中国水产科学,2018,25(3):567-575.