Effects of Feed Feeding, Starvation and Live Food Refeeding on Glucose Metabolism in Mandarinfish Siniperca chuatsi
MA Chenxi, ZHAO Jinliang, ZENG Mengdong, SONG Yindu, ZHOU Yunhong
Laboratory of Freshwater Fisheries Germplasm Resource, Ministry of Agriculture and Rural Affairs, Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
Abstract:In order to understand the effects of nutrient levels on glucose metabolism of mandarinfish Siniperca chuatsi, a three-week feed feeding experiment, and a starvation and refeeding experiment were carried out in juvenile with average body weights of (3.27±0.63) g and (3.54±0.52) g, and growth index, liver index, liver glycogen, muscle glycogen and blood glucose contents, insulin and glucagon contents, and 9 enzyme activities in glycolysis, pentose phosphate, gluconeogenesis pathways were measured and compared. The results showed that in feed feeding group there was significantly lower growth than that in the live food group, without significant difference in blood glucose, liver glycogen, muscle glycogen, insulin and glucagon contents between two groups, most enzymatic activities did not change significantly except for phosphofructokinase (PFK), and pyruvate kinase (PK). Compared with the normal feeding group, after three weeks of starvation, body weight, liver weight and liver index were significantly decreased. Liver glycogen and muscle glycogen, and blood glucose contents were significantly declined; insulin decreased and glucagon content increased; glucose dehydrogenase (GDH) activity decreased significantly, followed by PFK and PK activities, whereas phosphoenolpyruvate carboxykinase (PEPCK) and fructose-1,6-bisphosphatase (FBPase) activities did not changed. After two weeks of starvation and one week of refeeding, liver weight and liver index recovered faster than body weight. Blood glucose recovered faster than liver glycogen and muscle glycogen levels; insulin and glucagon levels were returned to normal level; all enzymatic activity restored. These findings indicated that feed feeding had no significant effect on glucose metabolism, while a significant change on glucose metabolism happened in starvation and refeeding of mandarinfish.
[1]范国燕,赵春彦,李英文.饥饿与再投喂对鳊鱼幼鱼糖代谢的影响[J].重庆师范大学学报(自然科学版),2010,27(5):19-22. [2]曹祥华,王文芳.胰岛素和胰高血糖素对血糖的调节及其相互作用[J].生物学通报,2014,49(6):15-17. [3]蔡春芳,陈立侨.鱼类对糖的利用评述[J].水生生物学报,2006,30(5):608-613. [4]罗毅平,谢小军.鱼类利用碳水化合物的研究进展[J].中国水产科学,2010,17(2):381-390. [5]杨丽萍,秦超彬,郑文佳,等.鱼类的葡萄糖感知与糖代谢调节研究进展[J].水产学报,2014,38(9):1639-1649. [6]李锐鑫,刘泓宇,谭北平,等.饥饿及再投喂处理对草鱼生长、葡萄糖代谢和转运蛋白1表达的影响[J].中国水产科学,2018,25(1):74-85. [7]瞿子惠,吴莉芳,周锴,等.饲料碳水化合物水平对洛氏鱥消化酶和糖代谢酶活性的影响[J].西北农林科技大学学报(自然科学版),2019,47(2):25-32. [8]周华.饲料碳水化合物水平对鳡幼鱼生长、体成分及糖代谢酶活性的影响[D].武汉:华中农业大学,2011:28-29. [9]马红娜,王猛强,陆游,等.碳水化合物种类和水平对大黄鱼生长性能、血清生化指标、肝脏糖代谢相关酶活性及肝糖原含量的影响[J].动物营养学报,2017,29(3):824-835. [10]高建文.鳜鱼养殖技术之一水库网箱养殖鳜鱼技术[J].中国水产,2006(7):27-28. [11]王贵英,曾可为,郑翠华,等.饲料脂肪水平对鳜鱼生长的影响研究[J].淡水渔业,2003,33(2):11-12. [12]王贵英,曾可为,高银爱,等.鳜配合饲料的最适蛋白质含量[J].水生生物学报,2005,29(2):189-192. [13]吴遵霖,潘德思.鳜幼鱼配合饲料最适蛋白质含量初步研究[J].水利渔业,1995(5):3-6. [14]梁旭方.鳜鱼人工饲料的研究[J].水产科技情报,2002,29(2):64-67. [15]张喜南.动物生物化学[M].北京:高等教育出版社,1992:253-254. [16]黄如彬,丁昌玉,林原怡. 生物化学实验[M]. 北京:世界图书出版社,1995:109-110. [17]王艳艳,赵飞,白璐,等.不同开口饵料对山区全人工繁殖杂交鲟生长发育的影响[J].江苏农业科学,2018,46(9):177-180. [18]逯尚尉,刘兆普,余燕.不同饵料对点带石斑鱼幼鱼生长、营养成分及组织消化酶活性的影响[J].上海海洋大学学报,2010,19(5):648-653. [19]赵月月,赵健蓉,胡佐灿,等.不同饵料对稀有鮈鲫仔稚鱼生长、消化道及消化酶的影响[J].水生生物学报,2018,42(1):114-122. [20]Luo Y P, Xie X J. Effects of body lipid content on the resting metabolic rate and postprandial metabolic response in the southern catfish Silurus meridionalis[J].Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology,2009,154(4):547-550. [21]Capilla E, Médale F, Navarro I, et al. Muscle insulin binding and plasma levels in relation to liver glucokinase activity, glucose metabolism and dietary carbohydrates in rainbow trout[J].Regulatory Peptides,2003,110(2):123-132. [22]原居林,郭建林,刘梅,等.不同饲料类型和放养密度对乌鳢生长特性及营养品质的影响[J].大连海洋大学学报,2017,32(5):534-543. [23]魏宏国.鱼类生长与饲料的质量关系[J].中国水产,2003(1):64-65. [24]Anderson J S, Sunderland R. Effect of extruder moisture and dryer processing temperature on vitamin C and E and astaxanthin stability[J].Aquaculture,2002,207(1/2):137-149. [25]张海涛,王安利,李国立,等.营养素对鱼类脂肪肝病变的影响[J].海洋通报,2004,23(1):82-89. [26]Xu W J, Jin J Y, Han D, et al. Physiological and transcriptomic responses to fishmeal-based diet and rapeseed meal-based diet in two strains of gibel carp (Carassius gibelio)[J].Fish Physiology and Biochemistry,2019,45(1):267-286. [27]Enes P, Panserat S, Kaushik S, et al. Effect of normal and waxy maize starch on growth, food utilization and hepatic glucose metabolism in European sea bass (Dicentrarchus labrax) juveniles[J].Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology,2006,143(1):89-96. [28]Borrebaek B, Christophersen B. Hepatic glucose phosphorylating activities in perch (Perca fluviatilis) after different dietary treatments[J].Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2000,125(3):387-393. [29]范泽,王安琪,孙金辉,等.不同木薯变性淀粉对鲤鱼生长及糖代谢的影响[J].水产科学,2018,37(1):1-7. [30]陆游,周飘萍,袁野,等.不同小麦淀粉和脂肪水平对大黄鱼的生长性能、饲料利用及糖代谢关键酶活力的影响[J].水产学报,2017,41(2):297-310. [31]鲁程瑶,张震,丁倩雯,等.外源性胰岛素对斑马鱼血糖及其转运的影响[J].生物技术进展,2018,8(5):426-434. [32]朱站英,华雪铭,于宁,等.草鱼蛋白质和脂肪代谢对饥饿胁迫的响应[J].水产学报,2012,36(5):756-763. [33]陈颖.饥饿和再投喂对黄颡鱼(Pseudobagrus fulvidraco Richardson)生长、耗氧率及生化组成的影响[D].长春:吉林农业大学,2003:41-42. [34]范国燕,李英文.饥饿胁迫对南方鲇幼鱼糖代谢的影响[J].重庆师范大学学报(自然科学版),2011,28(3):22-27. [35]高露姣,陈立侨,宋兵.饥饿和补偿生长对史氏鲟幼鱼摄食、生长和体成分的影响[J].水产学报,2004,28(3):279-284. [36]李江涛,林小涛,周晨辉,等.饥饿对食蚊鱼和唐鱼幼鱼能量物质消耗及游泳能力的影响[J].应用生态学报,2016,27(1):282-290. [37]田娟,涂玮,曾令兵,等.饥饿和再投喂期间尼罗罗非鱼生长、血清生化指标和肝胰脏生长激素、类胰岛素生长因子-Ⅰ和胰岛素mRNA表达丰度的变化[J].水产学报,2012,36(6):900-907. [38]Andoh T. Plasma insulin levels are regulated by release, rather than transcription or translation, in barfin flound-er, Verasper moseri[J].Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology,2015,184:27-33. [39]Novak C M, Jiang X L, Wang C F, et al. Caloric restriction and physical activity in zebrafish (Danio rerio)[J].Neuroscience Letters,2005,383(1/2):99-104. [40]Eroldoğan O T, Kumlu M, Kiris G A, et al. Compensatory growth response of Sparus aurata following different starvation and refeeding protocols[J].Aquaculture Nutrition,2006,12(3):203-210. [41]刘群,李吉方,温海深,等.饥饿和再投喂对许氏平鲉幼鱼体组分和糖原含量的影响[J].海洋湖沼通报,2013(1):11-15.