|
|
岩藻聚糖硫酸酯抗炎、抗氧化及其交互作用研究进展 |
张琳依1, 夏青1, 刘岩1, 贾哲宇1, 柯悦1, 程晶2, 任丹丹1, 何云海1, 汪秋宽1 |
1.大连海洋大学 食品科学与工程学院,辽宁省水产品加工及综合利用重点实验室,国家海藻加工技术研发分中心,辽宁 大连 116023; 2.辽宁惠康检测评价技术有限公司,辽宁 沈阳 110000 |
|
Research Progress on Anti-Inflammatory and Antioxidant Activities of Fucoidan and Their Interaction |
ZHANG Linyi1, XIA Qing1, LIU Yan1, JIA Zheyu1, KE Yue1, CHENG Jing2, REN Dandan1, HE Yunhai1, WANG Qiukuan1 |
1. National Research and Development Branch Center for Seaweed Processing, Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; 2. HuiKang Testing and Evaluating Technology Co., Ltd., Shenyang 110000, China |
引用本文: |
张琳依, 夏青, 刘岩, 贾哲宇, 柯悦, 程晶, 任丹丹, 何云海, 汪秋宽. 岩藻聚糖硫酸酯抗炎、抗氧化及其交互作用研究进展[J]. 水产科学, 2023, 42(1): 157-166.
ZHANG Linyi, XIA Qing, LIU Yan, JIA Zheyu, KE Yue, CHENG Jing, REN Dandan, HE Yunhai, WANG Qiukuan. Research Progress on Anti-Inflammatory and Antioxidant Activities of Fucoidan and Their Interaction. 水产科学, 2023, 42(1): 157-166.
|
|
|
|
链接本文: |
http://www.shchkx.com/CN/10.16378/j.cnki.1003-1111.21053 或 http://www.shchkx.com/CN/Y2023/V42/I1/157 |
[1]崔艳秋,罗鼎真,王晓民.褐藻多糖硫酸酯的抗炎与抗氧化活性研究进展[J].药学学报,2008,43(12):1186-1189. [2]李慧.基于NF-κB信号通路调控的黄酮类化合物抗炎活性及抗炎/抗氧化联运机制[D].武汉:华中农业大学,2019. [3]WIJESINGHE W A J P, JEON Y J. Biological activities and potential industrial applications of fucose rich sulfated polysaccharides and fucoidans isolated from brown seaweeds: a review[J].Carbohydrate Polymers,2012,88(1):13-20. [4]TIAN T, CHANG H, HE K, et al. Fucoidan from seaweed Fucus vesiculosus inhibits 2, 4-dinitrochlorobenzene-induced atopic dermatitis[J].International Immunopharmacology,2019,75:105823. [5]WANG J H, HU S W, JIANG W, et al. Fucoidan from sea cucumber may improve hepatic inflammatory response and insulin resistance in mice[J].International Immunopharmacology,2016,31:15-23. [6]DON T M, CHANG W J, JHENG P R, et al. Curcumin-laden dual-targeting fucoidan/chitosan nanocarriers for inhibiting brain inflammation via intranasal delivery[J].International Journal of Biological Macromolecules,2021,181:835-846. [7]VAAMONDE-GARCÍA C, FLÓREZ-FERNÁNDEZ N, TORRES M D, et al. Study of fucoidans as natural biomolecules for therapeutical applications in osteoarthritis[J].Carbohydrate Polymers,2021,258:117692. [8]XU Y J, ZHANG Q B, LUO D L, et al. Low molecular weight fucoidan modulates P-selectin and alleviates diabetic nephropathy[J].International Journal of Biological Macromolecules,2016,91:233-240. [9]NGUYEN V T, KO S C, OH G W, et al. Anti-inflammatory effects of sodium alginate/gelatine porous scaffolds merged with fucoidan in murine microglial BV2 cells[J].International Journal of Biological Macromolecules,2016,93:1620-1632. [10]DORNELAS-FILHO A F, PEREIRA V B M, WONG D V T, et al. Neutrophils contribute to the pathogenesis of hemorrhagic cystitis induced by ifosfamide[J].International Immunopharmacology,2018,62:96-108. [11]FERNANDO I P S, SANJEEWA K K A, SAMARAKOON K W, et al. A fucoidan fraction purified from Chnoospora minima;a potential inhibitor of LPS-induced inflammatory responses[J].International Journal of Biological Macromolecules,2017,104:1185-1193. [12]KIM M H, JOO H G. Immunostimulatory effects of fucoidan on bone marrow-derived dendritic cells[J].Immunology Letters,2008,115(2):138-143. [13]张祺,李学敏,李兆杰,等.海参岩藻聚糖硫酸酯对巨噬细胞的调节作用及信号通路研究[J].中国药理学通报,2015,31(1):87-92. [14]罗娟梅,王展,范斌,等.海带岩藻聚糖硫酸酯对头孢哌酮诱导肠道损伤保护作用的研究[J].中国海洋药物,2021,40(4):1-8. [15]胡世伟,王静凤,李世杰,等.海地瓜岩藻聚糖硫酸酯对胰岛素抵抗小鼠肝脏炎症反应的影响[J].营养学报,2016,38(1),24-29. [16]JAYAWARDENA T U, FERNANDO I P S, LEE W W, et al. Isolation and purification of fucoidan fraction in Turbinaria ornata from the Maldives;inflammation inhibitory potential under LPS stimulated conditions in in-vitro and in-vivo models[J].International Journal of Biological Macromolecules,2019,131:614-623. [17]TAKAHASHI H, KAWAGUCHI M, KITAMURA K, et al. An exploratory study on the anti-inflammatory effects of fucoidan in relation to quality of life in advanced cancer patients[J].Integrative Cancer Therapies,2018,17(2):282-291. [18]陈晋广,朱明芳.p38/JNK MAPK信号通路在Th细胞分化中的作用[J].中华中医药学刊,2009,27(11):2377-2378. [19]YE J, CHEN D H, YE Z C, et al. Fucoidan isolated from Saccharina japonica inhibits LPS-induced inflammation in macrophages via blocking NF-κB, MAPK and JAK-STAT pathways[J].Marine Drugs,2020,18(6):328. [20]CHE N, MA Y J, XIN Y H. Protective role of fucoidan in cerebral ischemia-reperfusion injury through inhibition of MAPK signaling pathway[J].Biomolecules & Therapeutics,2017,25(3):272-278. [21]MANIKANDAN R, PARIMALANANDHINI D, MAHALAKSHMI K, et al. Studies on isolation,characterization of fucoidan from brown algae Turbinaria decurrens and evaluation of it's in vivo and in vitro anti-inflammatory activities[J].International Journal of Biological Macromolecules,2020,160:1263-1276, [22]WANG L, OH J Y, LEE W, et al. Fucoidan isolated from Hizikia fusiforme suppresses ultraviolet B-induced photodamage by down-regulating the expressions of matrix metalloproteinases and pro-inflammatory cytokines via inhibiting NF-κB, AP-1, and MAPK signaling pathways[J].International Journal of Biological Macromolecules,2021,166:751-759. [23]刘辉,姚咏明.细胞内炎症信号通路交汇作用研究进展[J].中国病理生理杂志,2005,21(8):1607-1613. [24]杜杰.有氧运动通过抑制肝脏IKKβ/NF-κB信号通路改善胰岛素抵抗小鼠炎症反应[J].中国体育科技,2017,53(6):101-107. [25]毛磊,王静凤,陈鹏,等.梅花参岩藻聚糖硫酸酯对胰岛素抵抗小鼠慢性炎症的改善作用及其机制研究[J].中国海洋药物,2016,35(2):51-58. [26]王爱珍,安立龙.褐藻岩藻聚糖生物活性的研究进展[J].中国畜牧兽医,2013,40(5):97-100. [27]彭光辉.COX-2和VEGF在胃腺癌组织中的表达及相关性研究[D].合肥:安徽医科大学,2012. [28]袁斌,莫建文.NF-κB/COX-2信号通路与静脉血栓形成的相关性研究进展[J].赣南医学院学报,2018,38(3):295-300. [29]LEE Y S, KIM M S, LEE D H, et al. Luteolin 8-C-β-fucopyranoside downregulates IL-6 expression by inhibiting MAPKs and the NF-κB signaling pathway in human monocytic cells[J].Pharmacological Reports,2015,67(3):581-587. [30]DO H, PYO S, SOHN E H. Suppression of iNOS expression by fucoidan is mediated by regulation of p38 MAPK, JAK/STAT, AP-1 and IRF-1, and depends on up-regulation of scavenger receptor B1 expression in TNF-α- and IFN-γ-stimulated C6 glioma cells[J].The Journal of Nutritional Biochemistry,2010,21(8):671-679. [31]宋泽.大连厚叶海带褐藻聚糖硫酸酯的分离纯化及其抗炎作用研究[D].大连:大连海洋大学,2019. [32]PARK H Y, HAN M H, PARK C, et al. Anti-inflammatory effects of fucoidan through inhibition of NF-κB, MAPK and Akt activation in lipopolysaccharide-induced BV2 microglia cells[J].Food and Chemical Toxicology,2011,49(8):1745-1752. [33]YANG M L, WANG Y D, PATEL G, et al. In vitro and in vivo anti-inflammatory effects of different extracts from Epigynum auritum through down-regulation of NF-κB and MAPK signaling pathways[J].Journal of Ethnopharmacology,2020,261:113105. [34]SANJEEWA K K A, JAYAWARDENA T U, KIM S Y, et al. Fucoidan isolated from invasive Sargassum horneri inhibit LPS-induced inflammation via blocking NF-κB and MAPK pathways[J].Algal Research,2019,41:101561. [35]胡世伟,王静凤,徐慧,等.冰岛刺参岩藻聚糖硫酸酯对胰岛素抵抗小鼠炎症改善作用的研究[J].中国海洋药物,2015,34(6):49-56. [36]YIN J Y, YANG X Q, XIA B, et al. The fucoidan from sea cucumber Apostichopus japonicus attenuates lipopolysaccharide-challenged liver injury in C57BL/6J mice[J].Journal of Functional Foods,2019,61:103493. [37]孙鹂.炎症反应与白细胞迁移[J].安徽农业科学,2011,39(21):12863-12865. [38]WU S Y, ZHANG X, LIU J, et al. Physicochemical characterization of Sargassum fusiforme fucoidan fractions and their antagonistic effect against P-selectin-mediated cell adhesion[J].International Journal of Biological Macromolecules,2019,133:656-662. [39]潘景业,金可可,陈雷.选择素在急性炎症反应中的作用[J].实用医学杂志,2003,19(11):1279-1282. [40]宋海燕,何文辉,张奥,等.褐藻中岩藻聚糖硫酸酯生物学活性的研究进展[J].食品工业科技,2016,37(2):370-373. [41]落继先. P-选择素糖蛋白配体-1在炎症中的作用及研究进展[EB/OL]. (2015-11-18)[2021-04-01]. http://www.paper.edu.cn/releasep aper/content/201511-261. [42]SHU G F, LU C Y, WANG Z X, et al. Fucoidan-based micelles as P-selectin targeted carriers for synergistic treatment of acute kidney injury[J].Nanomedicine:Nanotechnology,Biology and Medicine,2021,32:102342. [43]李英俊,臧丽,张乃生,等.L-选择素分子结构及功能的研究进展[J].动物医学进展,2005,26(1):1-5. [44]林宝玉.浅谈自由基对人体的危害及清除方法[J].中国西部科技,2007,6(18):37. [45]刘旭,曲桂燕,周裔彬,等.泡叶藻及海带藻渣中岩藻聚糖硫酸酯的提取及其抗氧化活性[J].海洋科学,2013,37(12):34-39. [46]NERI T A N, ROHMAH Z, TICAR B F, et al. Evaluation of sea mustard (Undaria pinnatifida) sporophylls from South Korea as fucoidan source and its corresponding antioxidant activities[J].Fisheries and Aquatic Sciences,2019,22:24. [47]BORAZJANI N J, TABARSA M, YOU S G, et al. Improved immunomodulatory and antioxidant properties of unrefined fucoidans from Sargassum angustifolium by hydrolysis[J].Journal of Food Science and Technology,2017,54(12):4016-4025. [48]CHALE-DZUL J, FREILE-PELEGRÍN Y, ROBLEDO D, et al. Protective effect of fucoidans from tropical seaweeds against oxidative stress in HepG2 cells[J].Journal of Applied Phycology,2017,29(5):2229-2238. [49]KANG M C, KIM S Y, KIM E A, et al. Antioxidant activity of polysaccharide purified from Acanthopanax koreanum Nakai stems in vitro and in vivo zebrafish model[J].Carbohydrate Polymers,2015,127:38-46. [50]袁松.不同分子量海带岩藻聚糖硫酸酯对大鼠抗胃溃疡作用的研究[D].青岛:中国海洋大学,2014. [51]朱昱哲,王静凤,石迪,等.海参岩藻聚糖硫酸酯对长期饮酒小鼠肝脏保护作用的研究[J].营养学报,2012,34(5):474-477. [52]WANG T, ZHU M, HE Z Z. Low-molecular-weight fucoidan attenuates mitochondrial dysfunction and improves neurological outcome after traumatic brain injury in aged mice:involvement of Sirt3[J].Cellular and Molecular Neurobiology,2016,36(8):1257-1268. [53]邹赟,何立群.健脾清化方对AngⅡ刺激下大鼠系膜细胞NADPH/p38MAPK氧化应激通路的影响[J].中成药,2019,41(10):2344-2348. [54]曾令勇,黎荣,钱冉.阿托伐他汀对ApoE-/-小鼠动脉粥样硬化血管5-脂氧化酶通路的影响[J].临床和实验医学杂志,2019,18(11):1129-1132. [55]高远生.一氧化氮信号通路与血管功能[J].生理科学进展,2017,48(1):58-62. [56]ZHU D Z, WANG Y T, ZHUO Y L, et al. Fucoidan inhibits LPS-induced acute lung injury in mice through regulating GSK-3β-Nrf2 signaling pathway[J].Archives of Pharmacal Research,2020,43(6):646-654. [57]FERNANDO I P S, DIAS M K H M, MADUSANKA D M D, et al. Step gradient alcohol precipitation for the purification of low molecular weight fucoidan from Sargassum siliquastrum and its UVB protective effects[J].International Journal of Biological Macromolecules,2020,163:26-35. [58]杜娟娟,罗萍,原芳,等.昆布多糖硫酸酯对I/R模型大鼠心肌损伤的保护作用[J].西安交通大学学报(医学版),2019,40(4):525-530. [59]肖海芳,付晶晶,王友玲,等.菊苣酸对活性氧诱导脂质和DNA氧化损伤的影响[J].食品科学,2018,39(13): 235-240. [60]PHULL A R, MAJID M, HAQ I U, et al. In vitro and in vivo evaluation of anti-arthritic, antioxidant efficacy of fucoidan from Undaria pinnatifida (Harvey) Suringar[J].International Journal of Biological Macromolecules,2017,97:468-480. [61]ROLO A P, TEODORO J S, PALMEIRA C M. Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis[J].Free Radical Biology and Medicine,2012,52(1):59-69. [62]XIONG M Q, ZHAO Y, MO H H, et al. Intermittent hypoxia increases ROS/HIF-1α'related oxidative stress and inflammation and worsens bleomycin-induced pulmonary fibrosis in adult male C57BL/6J mice[J].International Immunopharmacology,2021,100:108165. [63]KUMAR P, SWAIN M M, PAL A. Hyperglycemia-induced inflammation caused down-regulation of 8-oxoG-DNA glycosylase levels in murine macrophages is mediated by oxidative-nitrosative stress-dependent pathways[J].The International Journal of Biochemistry & Cell Biology,2016,73:82-98. [64]ZHAO D, KWON S H, CHUN Y S, et al. Anti-neuroinflammatory effects of fucoxanthin via inhibition of Akt/NF-κB and MAPKs/AP-1 pathways and activation of PKA/CREB pathway in lipopolysaccharide-activated BV-2 microglial cells[J].Neurochemical Research,2017,42(2):667-677. [65]张昕,赵延蕾,陈睿曦,等.海参岩藻聚糖硫酸酯对小鼠胰岛素抵抗及炎症因子的影响[J].食品科学,2014,35(21):201-206. [66]郑岚,马耀宏,孟庆军,等.黑蒜多糖的斑马鱼体内抗氧化、抗炎症活性分析[J].中国食品学报,2020,20(8):65-75. [67]DADA L A, SZNAJDER J I. Mitochondrial Ca2+ and ROS take center stage to orchestrate TNF-α-mediated inflammatory responses[J].The Journal of Clinical Investigation,2011,121(5):1683-1685. [68]蔡洁.细胞外超氧化物歧化酶对内毒素所致氧化应激及肺部炎症的抑制作用[D].南京:南京医科大学,2013. [69]夏世金,孙涛,吴俊珍.自由基、炎症与衰老[J].实用老年医学,2014,28(2):100-103. [70]CHOI J I, RAGHAVENDRAN H R B, SUNG N Y, et al. Effect of fucoidan on aspirin-induced stomach ulceration in rats[J].Chemico-Biological Interactions,2010,183(1):249-254. [71]LI S, LIN Q S, SHAO X H, et al. NLRP3 inflammasome inhibition attenuates cisplatin-induced renal fibrosis by decreasing oxidative stress and inflammation[J].Experimental Cell Research,2019,383(1):111488. [72]ISHFAQ M, WU Z Y, WANG J, et al. Baicalin alleviates Mycoplasma gallisepticum-induced oxidative stress and inflammation via modulating NLRP3 inflammasome-autophagy pathway[J].International Immunopharmacology,2021,101:108250. [73]ZHANG L J, JING M M, LIU Q. Crocin alleviates the inflammation and oxidative stress responses associated with diabetic nephropathy in rats via NLRP3 inflammasomes[J].Life Sciences,2021,278:119542. [74]ABAIS J M, XIA M, ZHANG Y, et al. Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector?[J].Antioxidants & Redox Signaling,2015,22(13):1111-1129. [75]YU J J, NAGASU H, MURAKAMI T, et al. Inflammasome activation leads to Caspase-1-dependent mitochondrial damage and block of mitophagy[J].Proceedings of the National Academy of Sciences of the United States of America,2014,111(43):15514-15519. [76]程雨菲,朱晓岩,马爱军,等.褐藻糖胶对小鼠颈动脉粥样硬化易损斑块作用及机制[J].青岛大学学报(医学版),2020,56(5):536-539. [77]曾洁,邓志慧,付红娟,等.茶黄素激活Nrf2/HO-1通路保护血管内皮细胞氧化应激损伤[J].茶叶科学,2020,40(5):632-640. [78]王茹,沈磊.圣草酚对实验性结肠炎小鼠Nrf2/HO-1通路的影响[J].中国免疫学杂志,2020,36(8):928-932. [79]张红娜,周玉法,刘敬博,等.基于NF-κB和Nrf2信号通路探讨槲皮素的护肝功效及其作用机理[J].西北农业学报,2020,29(1):143-149. [80]顾烽,符霞,孙立勤,等.白藜芦醇通过Nrf2/ARE通路减轻柯萨奇病毒B3感染的乳鼠心肌细胞炎症和氧化应激反应[J].病毒学报,2020,36(1):63-69. [81]陈晨,殷园园,武夏芳,等.活性氧通过MAPKs和PI3K/AKT通路激活Nrf2研究进展[J].中国公共卫生,2016,32(6):870-873. [82]ZHENG Y Y, LIU T T, WANG Z Q, et al. Low molecular weight fucoidan attenuates liver injury via SIRT1/AMPK/PGC1α axis in db/db mice[J].International Journal of Biological Macromolecules,2018,112:929-936. [83]WANG Y Q, WEI J G, TU M J, et al. Fucoidan alleviates acetaminophen-induced hepatotoxicity via oxidative stress inhibition and Nrf2 translocation[J].International Journal of Molecular Sciences,2018,19(12):4050. [84]LEKSHMI V S, RAUF A A, MURALEEDHARA KURUP G. Sulfated polysaccharides from the edible marine algae Padina tetrastromatica attenuates isoproterenol-induced oxidative damage via activation of PI3K/Akt/Nrf2 signaling pathway—an in vitro and in vivo approach[J].Chemico-Biological Interactions,2019,308:258-268. [85]甘麦邻,杨露,谭娅,等.miR-143生物学功能的研究进展[J].生物技术通报,2017,33(6):16-23. [86]唐朝华. miRNA-143通过氧化应激调控过敏原诱导的支气管哮喘[J].医药卫生, 2016,2(6): 5- 7. [87]方永超.环氧化酶-2和miR-143在骨肉瘤中的表达和临床意义[D].广州:南方医科大学,2015. [88]EL-FAR Y M, KHODIR A E, EMARAH Z A, et al. Fucoidan ameliorates hepatocellular carcinoma induced in rats:effect on miR143 and inflammation[J].Nutrition and Cancer,2021,73(8):1498-1510. [89]ZHANG H Q, ZHANG S,LYN N, et al. Down regulation of glutathione and glutamate cysteine ligase in the inflammatory response of macrophages[J].Free Radical Biology and Medicine,2020,158:53-59. [90]刘富萍,张琪,谷楠,等.谷胱甘肽及丙二醛在炎症中表达的研究进展[J].医学美学美容(中旬刊),2015,24(6):1001-1002. [91]RUTKUTE K, ASMIS R H, NIKOLOVA-KARAKASHIAN M N. Regulation of neutral sphingomyelinase-2 by GSH:a new insight to the role of oxidative stress in aging-associated inflammation[J].Journal of Lipid Research,2007,48(11):2443-2452. [92]楚广品,邱平,胡岳,等.ROS介导的炎症反应与中枢神经系统疾病[J].中国组织化学与细胞化学杂志,2016,25(3):285-290. [93]瞿佳,林娜,丁启龙.活性氧介导的炎症小体激活与心血管疾病[J].今日药学,2017,27(12):855-858. [94]乔艺.高脂诱导的氧化应激对小鼠肠道菌群改变与炎症反应的影响[D].无锡:江南大学,2014. |
[1] |
张凯, 王伟瑜, 赵丽悦, 熊洛梅, 梅叶涵, 黄可欣, 刘芳玲, 于瑾, 郑善坚. 温度对马口鱼幼鱼耗氧率、窒息点及抗氧化能力的影响[J]. 水产科学, 2023, 42(1): 89-95. |
[2] |
黄兰英, 张达娟, 张树林, 毕相东, 戴伟. 微囊藻毒素对凡纳滨对虾肝胰腺氧化损伤研究[J]. 水产科学, 2022, 41(6): 1017-1022. |
[3] |
张奇, 杨军, 廖伟坚, 李自金, 郑连春, 何绪刚. 复合型饲料添加剂对大口黑鲈生长和健康状况的影响[J]. 水产科学, 2022, 41(3): 431-437. |
[4] |
雷金洪, 刘天天, 张广武, 傅丽容, 史海涛. 高温应激下维生素E对红耳龟免疫指标及消化酶的影响[J]. 水产科学, 2022, 41(2): 311-315. |
[5] |
王茁宇, 杨春桥, 王秋举, 周井祥, 梁杰, 张瑞雪, 袁海延. 干露时间对凡纳滨对虾抗氧化功能的影响[J]. 水产科学, 2021, 40(5): 651-660. |
[6] |
袁艳敏,刘福利,梁洲瑞,王潇. 氮营养盐对极北海带幼苗生长和生理生化特性的影响[J]. 水产科学, 2021, 40(2): 203-209. |
[7] |
邓高威,段健诚,王玉,王林华,欧阳乐飞,高焕,赖晓芳,张庆起,阎斌伦. 干露胁迫对脊尾白虾存活率及氧化应激反应的影响[J]. 水产科学, 2021, 40(2): 244-249. |
[8] |
张立颖, 赵萌, 李文通, 袁丁, 杨贵强. 投喂虾青素对哲罗鲑虾青素含量和抗氧化力的影响[J]. 水产科学, 2021, 40(1): 89-95. |
[9] |
张倩, 黄进强, 权金强, 吴深基, 王晓谰, 潘玉财. 急性低氧胁迫和复氧对鲫鱼氧化应激的影响[J]. 水产科学, 2020, 39(5): 649-656. |
[10] |
蔡冰, 陈万光, 王凡, 左小玉. 复方中草药对弧菌感染下虹鳟免疫相关基因表达的影响[J]. 水产科学, 2020, 39(5): 727-733. |
[11] |
王博雅, 郭策, 黄璞祎, 柴龙会. 急性升温胁迫与恢复对葛氏鲈塘鳢抗氧化酶活性的影响[J]. 水产科学, 2020, 39(3): 394-399. |
[12] |
孙红娟, 郑智亮, 王际辉, 周遵春. 仿刺参MyD88依赖途径基因的序列比较和表达分析[J]. 水产科学, 2020, 39(1): 22-29. |
[13] |
吕芳,辛美丽,丁刚,吴海一. 外源抗坏血酸对鼠尾藻镉胁迫的缓解效应[J]. 水产科学, 2019, 38(6): 813-818. |
[14] |
陈丽梅,刘利华,胡宏辉,秦艺铭,周文礼,孙敬锋,郭永军. 温度突变对毛蚶不同组织抗氧化酶活性的影响[J]. 水产科学, 2019, 38(4): 435-442. |
[15] |
管敏,张德志,王龙,班文波,张厚本,郭柏福,姜伟. 子二代中华鲟对急性低温胁迫的生理响应[J]. 水产科学, 2019, 38(4): 458-464. |
|
|
|
|