Abstract:In order to study the morphological characteristics and development rate of Tapes dorsatus in its early development stage, and to provide reference for the morphological development biology and artificial seeding of T. dorsatus, we observed, measured and photographed each developmental stages of the seeding process using a light microscope under water temperature of 25—26 ℃ and salinity of 29—31. The results showed that the newly fertilized eggs were round without blastocysts, and the size was (59.0±2.2) μm. After fertilization, the thin and bright fertilization membrane was raised and the polar body was released. The shell length of D-shaped larvae was (101.8±3.7) μm. The hinge line of the early umbo larvae was slightly curved and spherical foot primordium appeared. The umbo of medium term umbo larvae continue to uplift and foot primordium developed into boot foot shape, the base of the foot primordium formed a pair of statocysts which were 10 μm in diameter; in the post stage of umbo larvae, the umbo of larvae was prominent, and the boot-like foot extended into a stick, forming two pairs of tubular gill filaments on both sides of the foot base. The mature larvae had no “eye spots”, statocysts grew to 15 μm. Metamorphosis larvae's shell length was (228.4±11.2) μm, and velum shrinked and disappeared. Simultaneously secreted one or two byssus on the bottom of the foot, and the life of the larvae changed from planktonic life to attached life. In this stage, metamorphosis larvae secreted secondary shell to become juveniles. In the non siphon stage, due to the asymmetric growth of the secondary shell, the top of the shell was protrusive and inclined forward, and the gill filaments increased. In the single siphon stage, an outlet pipe appeared above the shell of juvenile. In the double siphon stage, the juvenile grew out of the inlet pipe, and the length was shorter than that of the outlet pipe. The end of the inlet pipe was surrounded by tentacles. The shell shape was basically the same as that of the adult shellfish, and the front end was rounded and the back end was trunk-shaped.The shell length of double siphon juvenile was (578.1±76.1) μm. It was found that the growth rule of the clam was “fast-slow-fast”. Larvae took 16 days to develop from the D-shaped stage to the metamorphosis, and juvenile took 30 days to develop from the attached life stage to the double siphon stage.
张柯馨, 杨尚松, 罗泽鑫, 张元, 展建强, 陈麟广, 卢怡凝, 刘志刚. 钝缀锦蛤胚胎、幼虫及稚贝发育观察[J]. 水产科学, 2023, 42(4): 682-689.
ZHANG Kexin, YANG Shangsong, LUO Zexin, ZHANG Yuan, ZHAN Jianqiang, CHEN Linguang, LU Yining, LIU Zhigang. Observation of the Development of Embryos, Larvae and Juveniles of Tapes dorsatus. 水产科学, 2023, 42(4): 682-689.
[1]庄启谦.中国动物志:软体动物门 双壳纲 帘蛤科[M].北京:科学出版社,2001:63-64. [2]黄洋,杜涛,杨世平.钝缀锦蛤生态习性的初步研究[J].水产科学,2008,27(4):175-178. [3]文宇.钝缀锦蛤繁殖生物学及稚贝生长的研究[D].长沙:湖南农业大学,2015:20-26. [4]巫旗生,曾志南,宁岳,等.钝缀锦蛤形态性状对活体质量的影响[J].水产科学,2018,37(1):110-114. [5]杨家林,邹杰,彭慧婧.温度、盐度和体质量对钝缀锦蛤滤食率和同化率的影响[J].水产科学,2019,38(1):104-108. [6]聂振平,彭慧婧,邹杰,等.钝缀锦蛤选育群体F2生长性状相关性及遗传力分析[J].广西科学,2020,27(3):241-247. [7]陈道海,李洪英,吴秋颖,等.10种帘蛤科贝类COⅠ基因序列分析及系统发育研究[J].生物资源,2018,40(3):277-284. [8]程汉良,周旻纯,陈冬勤,等.基于16S rDNA序列的帘蛤科贝类分子系统发育研究[J].水产科学,2012,31(11):657-662. [9]NELL J A, O'CONNOR W A, HAND R E, et al. Hatchery production of diploid and triploid clams, Tapes dorsatus (Lamarck 1818):a potential new species for aquaculture[J].Aquaculture,1995,130(4):389-394. [10]NELL J A, PATERSON K J. Salinity studies on the clams Katelysia rhytiphora (Lamy) and Tapes dorsatus (Lamarck)[J].Aquaculture Research,1997,28(2):115-119. [11]PATERSON K J, NELL J A. Effect of different growing techniques and substrate types on the growth and survival of the clams Tapes dorsatus (Lamarck) and Katelysia rhytiphora (Lamy)[J].Aquaculture Research,1997,28(9):707-715. [12]DENG Z H, WEI H J, ZHAO W, et al. Embryonic development and larval cultivation of Paphia schnelliana (Dunker), a unique economic species of the Beibu Gulf[J].Aquaculture,2021,533(1):736161. [13]巫旗生,文宇,曾志南,等.钝缀锦蛤繁殖周期和胚胎发育[J].中国水产科学,2017,24(3):488-496. [14]常亚青.贝类增养殖学[M].北京:中国农业出版社,2007:51-55. [15]王如才,王昭萍.海水贝类养殖学[M].青岛:中国海洋大学出版社,2008:376-382. [16]栗志民,钱佳慧,刘志刚,等.皱肋文蛤胚胎、幼虫及稚贝的发育[J].海洋科学,2015,39(7):52-59. [17]顾忠旗,倪梦麟,范卫明.厚壳贻贝胚胎发育观察[J].安徽农业科学,2010,38(32):18213-18215. [18]李琼珍,童万平,苏琼,等.大獭蛤的胚胎、幼虫及稚贝的形态发育[J].广西科学,2003,10(4):296-299. [19]刘永,余祥勇,梁飞龙,等.施氏獭蛤幼虫和稚贝发育及行为的研究[J].广东海洋大学学报,2007,27(1):17-21. [20]吴杨平,陈爱华,姚国兴,等.大竹蛏胚胎发生及稚贝发育基本特征[J].动物学杂志,2012,47(4):74-81. [21]齐秋贞,杨明月.缢蛏浮游幼虫、稚贝和幼贝的生长发育[J].台湾海峡,1984,3(1):90-99. [22]宋志乐,赵玉山,薛永兴,等.砂海螂(Mya arenaria Linnaens)幼体与稚贝发育的初步研究[J].烟台大学学报(自然科学与工程版),1993,6(2):26-34. [23]张云飞.杂色蛤仔的繁殖习性与胚胎发育[J].福建水产科技,1979,1(1):75-79. [24]毕克,包振民,黄晓婷,等.菲律宾蛤仔受精及早期胚胎发育过程的细胞学观察[J].水产学报,2004,28(6):623-627. [25]沈永忱,李秋,牟均素.泥蚶人工育苗技术[J].水产养殖,2005,26(3):30-31. [26]沈亦平,刘汀,姜海波,等.合浦珠母贝受精细胞学观察[J].武汉大学学报(自然科学版),1993,39(5):115-120. [27]杨爱国,王清印,孔杰.栉孔扇贝受精卵减数分裂的细胞学研究[J].中国水产科学,1999,6(3):96. [28]张跃平,吕小梅,洪一川,等.波纹巴非蛤胚胎与浮游幼虫的形态发育和生长特性[J].台湾海峡,2011,30(4):546-550. [29]邹琰,张天文,刘广斌,等.太平洋牡蛎人工育苗技术[J].科学养鱼,2020(10):62. [30]孙兆跃,王桃妮,范瑞良,等.近江牡蛎人工繁育研究[J].渔业信息与战略,2019,34(2):121-127. [31]尤仲杰,陆彤霞,马斌,等.几种环境因子对墨西哥湾扇贝幼虫和稚贝生长与存活的影响[J].热带海洋学报,2003,22(3):22-29. [32]顾成柏,刘泽秀.海湾扇贝人工育苗技术[J].科学养鱼,2004(7):32-33. [33]张克烽.翡翠贻贝土池人工育苗技术[J].科学养鱼,2013(4):41-42. [34]陈伟耀,廖永山.马氏珠母贝高产育苗技术[J].科学养鱼,2021(3):66-67. [35]杨凤,张淑红,王艳,等.土霉素对虾夷扇贝幼虫生长发育的影响[J].大连水产学院学报,2008,23(3):200-204. [36]倪以大.紫贻贝人工育苗[J].福建水产科技,1979,1(1):52-56. [37]李华琳.大连湾牡蛎人工育苗技术[J].渔业现代化,2005,32(3):16-17. [38]魏利平,徐宗法,王育红,等.文蛤人工育苗技术研究[J].齐鲁渔业,1996,13(4):15-18. [39]孙普廷,关福田,魏利平.青蛤Cyclina sinensis(Gmelin)育苗的研究[J].海洋湖沼通报,1985(4):53-57. [40]魏利平,束蕴芳,关福田,等.紫石房蛤生物学的初步研究[J].水产学报,1982,6(1):1-8. [41]沈永忱,郑宝太,刘吉明,等.中国蛤蜊的诱导产卵和胚胎发育[J].齐鲁渔业,2005,22(3):2-3. [42]LIU H, ZHU J X, SUN H L, et al. The clam, Xishi tongue Coelomactra antiquata (Spengler), a promising new candidate for aquaculture in China[J].Aquaculture,2006,255(1/2/3/4):402-409.