Abstract:In order to explore the differences in genetic diversity between different populations of blood clam Scapharca broughtonii, genetic diversities were investigated in 150 samples from 5 blood clam populations including the wild blood clam populations in the Changdao and Jimo waters of Yantai, Shandong Province, the wild populations in the waters of Busan, Republic of Korea, and the hybrids of China ♀× Republic of Korea ♂, Republic of Korea♀×China♂, and inbred generations of China ♀× China ♂ and Republic of Korea ♀×Republic of Korea ♂ by mitochondrial genes (16S rRNA and COⅠ and ribosomal internal transcriptional spacer (ITS-1). Fragments with 605 bp of the partial 16S rRNA gene, 766 bp of the partial COⅠ gene and 419 bp of the partial ITS-1 sequences were obtained after alignment and emendation. There were the maximal values of nucleotide differences and nucleotide diversity in the wild Jimo population based on 16S rRNA and COⅠ gene, and the maximal values of nucleotide differences and nucleotide diversity in ZH population based on ITS-1. Four and 14 haplotypes were defined among 16S rRNA and COⅠ from five populations respectively, and a total of 24 haplotypes were defined in ITS-1 from five populations. The neighbor-joining phylogenetic tree of haplotypes showed that the unique haplotypes of Jimo population were converged into a single branch based on 16S rRNA and COⅠ gene, without population characteristics based on ITS-1. The maximum genetic difference was found between Jimo population and other four populations on account of 16S rRNA and COⅠ gene, without genetic difference among five populations based on ITS-1. The findings indicated that the sensitivity of mtDNA was higher than that of rDNA genes in the study of intraspecific genetic evolution of S. broughtonii, and the genetic diversity of Jimo population was significantly higher than that of the 4 hybrids generation in China and Republic of Korea.
[1] 王如才,王昭萍. 海水贝类养殖学[M]. 青岛:中国海洋大学出版社,2008:362-370. [2] 陈琳琳,孔晓瑜,周立石,等. 魁蚶核糖体DNA基因转录间隔区的序列特征[J]. 中国水产科学,2005,12(1):104-108. [3] 蔡星媛,张秀梅,田璐,等. 盐度胁迫对魁蚶稚贝血淋巴渗透压及鳃Na+/K+-ATP酶活力的影响[J]. 南方水产科学,2015,11(2):12-19. [4] 蔡忠强,郑言鑫,任利群,等. 魁蚶(Scapharca broughtonii)中国群体与韩国群体杂交子一代的生长和存活比较[J]. 渔业科学进展,2016,37(6):81-86. [5] 郑言鑫,蔡忠强,王鹏,等. 魁蚶中国群体与韩国群体杂交子一代养成期生长比较[J]. 渔业科学进展,2018,39(4):147-151. [6] 曹艳,章群,宫亚运,等. 中国南海康氏马鲛线粒体COI序列遗传变异分析[J]. 南方水产科学,2016,12(5):53-60. [7] WANG L, SHI X F, SU Y Q, et al. Genetic divergence and historical demography in the endangered large yellow croaker revealed by mtDNA[J]. Biochemical Systematics and Ecology, 2013, 46:137-144. [8] BENTLEY B P, HARVEY E S, NEWMAN S J, et al. Local genetic patchiness but no regional differences between Indo-West Pacific populations of the dogtooth tuna Gymnosarda unicolor[J]. Marine Ecology Progress Series, 2014, 506:267-277. [9] SUN P, YIN F, SHI Z, et al. Genetic structure of silver pomfret (Pampus argenteus (Euphrasen, 1788)) in the Arabian Sea, Bay of Bengal, and South China Sea as indicated by mitochondrial COⅠ gene sequences[J]. Journal of Applied Ichthyology, 2013, 29 (4):733-737. [10] Hallerman E M. Population genetics:principles and applications for fisheries scientists [M]. Bethesda, Md.:American Fisheries Society, 2003:59-100. [11] 于涛,吴彪,杨爱国,等. 栉孔扇贝、虾夷扇贝及其杂交子代线粒体COⅠ和Cytb基因遗传多样性分析[J]. 海洋科学,2016,40(3):1-9. [12] 田云方,叶莹莹,吴常文,等. 基于线粒体COⅠ基因序列的丽文蛤群体遗传多样性和遗传结构分析[J]. 浙江海洋大学学报(自然科学版),2017,36(4):320-325,347. [13] TORII H, SATO S, HAMAGUCHI M, et al. The comparison of shell morphology and genetic relationship between Meretrix lusoria and M. petechialis in Japan and Korea[J]. Plankton and Benthos Research, 2010, 5(Supplement):231-241. [14] ZHAN A B, PEREPELIZIN P V, GHABOOLI S, et al. Scale-dependent post-establishment spread and genetic diversity in an invading mollusc in South America[J]. Diversity and Distributions,2012,18(10):1042-1055. [15] 胡利莎,张振,马培振,等. 10个菲律宾蛤仔野生群体的遗传多样性研究[J]. 海洋与湖沼,2016,47(3):549-556. [16] 孙明媛,朱锐,孙晓晴,等. 基于COⅠ和16S rRNA的库页岛马珂蛤遗传多样性和分子系统进化研究[J]. 中国水产科学,2018,25(4):891-901. [17] 刘寒苗,吴彪,刘志鸿,等. 魁蚶(Scapharca broughtonii)不同地理群体的遗传多样性及种群结构[J]. 渔业科学进展,2017,38(6):92-99. [18] AN H Y, PARK J Y. Ten new highly polymorphic microsatellite loci in the blood clam Scapharca broughtonii[J]. Molecular Ecology Notes, 2005, 5(4):896-898. [19] GIRIBET G, WHEELER W. On bivalve phylogeny:a high-level analysis of the Bivalvia (Mollusca) based on combined morphology and DNA sequence data[J]. Invertebrate Biology, 2002, 121(4):271-324. [20] 周珊珊,张秀梅,刘旭绪,等. 魁蚶稚贝的底质选择性及其潜沙能力评价[J]. 水产学报,2015,39(6):867-875. [21] LI J J, LI Q. Isolation and characterization of twelve novel microsatellite loci in the ark shell Scapharca broughtonii[J]. Conservation Genetics, 2008, 9(4):1055-1057. [22] 阮飞腾,高森,李莉,等. 山东沿海魁蚶繁殖周期与生化成分的周年变化[J]. 水产学报,2014,38(1):47-55. [23] 周玮,刘一兵,李坤,等. 魁蚶苗种的潜沙行为观察[J]. 大连海洋大学学报,2011,26(6):550-553. [24] 邹琰,郑永允,邱兆星,等. 魁蚶亲贝促熟与健康苗种培育技术[J]. 水产科技情报,2010,37(2):95-98. [25] ZHU J Q, DAHMS H U, YANG W X. Ultrastructure of the mature spermatozoon of the bivalve Scapharca broughtoni (Mollusca:Bivalvia:Arcidae)[J]. Micron, 2008, 39(8):1205-1209. [26] 郭晓亮. 中韩两国魁蚶生理代谢和生长特性比较研究[D]. 上海:上海海洋大学,2016. [27] 孙楠. 魁蚶增殖放流效果评估与群体遗传多样性分析[D]. 青岛:中国海洋大学,2015. [28] 陈桢,邱兆星,王鸿霞,等. 基于COⅠ和ITS-1基因对魁蚶野生群体和人工繁育子代的遗传分析[J]. 海洋科学,2013,37(7):24-32. [29] 孔晓瑜,张留所,喻子牛,等. 太平洋牡蛎核糖体DNA转录间隔子和线粒体基因片段序列测定[J]. 中国水产科学,2002,9(4):304-308. [30] 李敏,黄梓荣,许友伟,等. 基于线粒体Cyt b序列的花斑蛇鲻种群遗传结构研究[J]. 南方水产科学,2019,15(6):41-48. [31] 彭敏,韩耀全,王大鹏,等. 基于线粒体Cyt b基因序列的西江流域广西境内卷口鱼遗传多样性分析[J]. 南方水产科学,2020,16(5):10-18. [32] 徐洁,王晓梅,李晶晶,等. 基于COⅠ序列绒螯蟹属DNA条形码和遗传多样性研究[J]. 水产科学,2017,36(4):480-487. [33] 赵丹,刘莹,宋爱环,等. 基于线粒体COⅠ序列的泥螺群体遗传多样性研究[J]. 水产科学,2017,36(3):353-358. [34] 李大命,孙文祥,许飞,等. 高邮湖大银鱼、太湖新银鱼Cytb和COⅠ基因序列多态性分析[J]. 水产科学,2020,39(2):258-264. [35] 梁宏伟,孟彦,罗相忠,等. 基于线粒体COⅠ基因的6个黄鳝群体遗传多样性[J]. 中国水产科学,2018,25(4):837-846. [36] 林昕,王鹏,杜琦,等. 福建沿海不同养殖区泥蚶的ITS-1基因片段序列分析[J]. 福建水产,2008,30(1):61-65. [37] 赵明,宋炜,马春艳,等. 基于线粒体COⅠ基因序列的棘头梅童鱼7个野生群体遗传结构分析[J]. 中国水产科学,2015,22(2):233-242. [38] 聂鸿涛,李佳,霍忠明,等. 菲律宾蛤仔人工选育群体与野生群体的遗传多样性分析[J]. 中国水产科学,2016,23(3):538-546.