Effects of Ammonia-N Concentrations on Molting and Antioxidant Capacity of Chinese Mitten Crab Eriocheir sinensis
WANG Tianyu1, CONG Yaxin1, WU Zhaoxia1, SUN Wentao2, LIU Yimeng1
1. College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; 2. Institute of Plant Nutrition and Environmental Resources, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
Abstract:To evaluate the effects of different concentrations of ammonia-N in the water environment on the molting, proximate composition, and antioxidant capacity of juvenile Chinese mitten crab Eriocheir sinensis, the Chinese mitten crab [(6.13±0.05) g] was cultured in water with ammonia-N concentration of 0 (the control group), 10.47, 20.93, 31.40, and 41.87 mg/L, respectively. And the survival rate, growth index, proximate composition, and antioxidant enzyme activities of Chinese mitten crab were determined at 0, 3, 6, 9 and 12 days after exposure to ammonia-N at water temperature of (22.0±0.5) ℃ and pH of 7.63±0.44. The results showed that the survival rate and molting rate of Chinese mitten crab in the 10.47 mg/L ammonia-N treatment group were almost unaffected during ammonia-N exposure, whereas those in the other ammonia-N treatment groups were significantly decreased (P<0.05). The consumption of energy substances in crab meat, namely crude protein and crude fat, decreased with the increase in ammonia-N concentration. The superoxide dismutase (SOD) activity in the hepatopancreas of crabs in the 10.47 mg/L ammonia-N treatment group was significantly increased at the initial stage of exposure, the antioxidant capacity of Chinese mitten crab was enhanced, and the malondialdehyde (MDA) content was not affected after exposure. However, with the increase in ammonia-N concentration, SOD, catalase (CAT), and peroxidase (POD) activities were significantly decreased (P<0.05), and MDA content was significantly increased (P<0.05). Therefore, the ammonia-N concentration of higher than 20.93 mg/L may inhibit the growth of Chinese mitten crab, reduce its antioxidant enzyme activities, and induce oxidative stress. The findings provide the data support and theoretical basis for the study on response mechanisms of Chinese mitten crab to ammonia-N stress and the improvement of the aquaculture water environment.
王天雨, 丛亚新, 吴朝霞, 孙文涛, 刘依朦. 氨氮对中华绒螯蟹蜕壳和抗氧化能力的影响[J]. 水产科学, 2024, 43(4): 590-597.
WANG Tianyu, CONG Yaxin, WU Zhaoxia, SUN Wentao, LIU Yimeng. Effects of Ammonia-N Concentrations on Molting and Antioxidant Capacity of Chinese Mitten Crab Eriocheir sinensis. 水产科学, 2024, 43(4): 590-597.
[1] CHEN D W, ZHANG M. Non-volatile taste active compounds in the meat of Chinese mitten crab (Eriocheir sinensis)[J]. Food Chemistry,2007,104(3):1200-1205. [2] 徐敏,马旭洲,王武.稻蟹共生系统水稻栽培模式对水稻和河蟹的影响[J].中国农业科学,2014,47(9):1828-1835. [3] YAN Y, LIU M D, YANG D, et al. Effect of different rice-crab coculture modes on soil carbohydrates[J]. Journal of Integrative Agriculture,2014,13(3):641-647. [4] BENLI A Ç K, KÖKSAL G, ÖZKUL A. Sublethal ammonia exposure of Nile tilapia (Oreochromis niloticus L. ):effects on gill, liver and kidney histology[J]. Chemosphere,2008,72(9):1355-1358. [5] 范翠翠,吴朝霞,孙文涛,等.不同比例氮肥施用对稻田蟹生长及营养价值的影响[J].中国农学通报,2010,26(19):417-422. [6] XUE S Q, CHEN S M, GE Y X, et al. Regulation of glutathione on growth performance, biochemical parameters, non-specific immunity, and related genes of common carp (Cyprinus carpio) exposed to ammonia[J]. Aquaculture,2022,546:737241. [7] 熊大林,段亚飞,陈成勋,等.高温与氨氮复合胁迫对凡纳滨对虾渗透调节的影响[J].水产科学,2021,40(4):475-482. [8] 唐首杰,刘辛宇,吴太淳,等.慢性氨氮胁迫对“新吉富”罗非鱼幼鱼生长及血清生化指标的影响[J].水产科学,2019,38(6):741-748. [9] GENG Z X, LIU Q A, WANG T, et al. Changes in physiological parameters involved in glutamine and urea synthesis in Pacific white shrimp, Litopenaeus vannamei, fed Ampithoe sp. meal and exposed to ammonia stress[J]. Aquaculture Research,2020,51(7):2725-2734. [10] CHEN J C, KOU Y Z. Effects of ammonia on growth and molting of Penaeus japonicus juveniles[J]. Aquaculture,1992,104(3/4):249-260. [11] 刘洋,凌去非,于连洋,等.氨氮胁迫对泥鳅不同组织SOD和GSH-PX活性的影响[J].安徽农业科学,2011,39(2):1069-1072. [12] 余瑞兰,聂湘平,魏泰莉,等.分子氨和亚硝酸盐对鱼类的危害及其对策[J].中国水产科学,1999,6(3):73-77. [13] 洪美玲,陈立侨,顾顺樟,等.氨氮胁迫对中华绒螯蟹免疫指标及肝胰腺组织结构的影响[J].中国水产科学,2007,14(3):412-418. [14] 黄鹤忠,李义,宋学宏,等.氨氮胁迫对中华绒螯蟹(Eriocheir sinensis)免疫功能的影响[J].海洋与湖沼,2006,37(3):198-205. [15] WANG T Y, YANG C, ZHANG T T, et al. Immune defense, detoxification, and metabolic changes in juvenile Eriocheir sinensis exposed to acute ammonia[J]. Aquatic Toxicology,2021,240:105989. [16] WANG T Y, YANG C, ZHANG S, et al. Metabolic changes and stress damage induced by ammonia exposure in juvenile Eriocheir sinensis[J]. Ecotoxicology and Environmental Safety,2021,223:112608. [17] EMERSON K, RUSSO R C, LUND R E, et al. Aqueous ammonia equilibrium calculations:effect of pH and temperature[J]. Journal of the Fisheries Research Board of Canada,1975,32(12):2379-2383. [18] HE J, WU X G, LI J Y, et al. Comparison of the culture performance and profitability of wild-caught and captive pond-reared Chinese mitten crab (Eriocheir sinensis) juveniles reared in grow-out ponds:implications for seed selection and genetic selection programs[J]. Aquaculture,2014,434:48-56. [19] 中华人民共和国国家卫生和计划生育委员会.GB 5009.3—2016,食品安全国家标准 食品中水分的测定[S].北京:中国标准出版社,2017. [20] 国家卫生和计划生育委员会,国家食品药品监督管理总局.GB 5009.5—2016,食品安全国家标准 食品中蛋白质的测定[S].北京:中国标准出版社,2017. [21] 国家卫生和计划生育委员会,国家食品药品监督管理总局.GB 5009.6—2016,食品安全国家标准 食品中脂肪的测定[S].北京:中国标准出版社,2017. [22] 赵磊,龙晓文,吴旭干,等.育肥饲料中混合植物油替代鱼油对中华绒螯蟹成体雄蟹性腺发育、脂质代谢、抗氧化及免疫性能的影响[J].动物营养学报,2016,28(2):455-467. [23] 程艳,陈璐,米艳华,等.水稻抗氧化酶活性测定方法的比较研究[J].江西农业学报,2018,30(2):108-111. [24] 卓成龙,宋江峰,李大婧,等.微波处理对毛豆仁POD酶活的影响[J].食品科学,2010,31(14):289-293. [25] LIU S N, PAN L Q, LIU M Q, et al. Effects of ammonia exposure on nitrogen metabolism in gills and hemolymph of the swimming crab Portunus trituberculatus[J]. Aquaculture,2014,432:351-359. [26] 张俊彪,崔广同,蔡春芳,等.短期异常酸、碱胁迫对中华绒螯蟹生理和生长的影响[J].淡水渔业,2020,50(6):99-106. [27] 杨航,杨志刚,张龙.蜕壳周期内中华绒螯蟹钙含量、组织结构及相关基因表达变化[J].水产科学,2022,41(1):116-121. [28] KOO J G, KIM S G, JEE J H, et al. Effects of ammonia and nitrite on survival, growth and moulting in juvenile tiger crab, Orithyia sinica (Linnaeus)[J]. Aquaculture Research,2005,36(1):79-85. [29] WANG W, WU X G, LIU Z J, et al. Insights into hepatopancreatic functions for nutrition metabolism and ovarian development in the crab Portunus trituberculatus:gene discovery in the comparative transcriptome of different hepatopancreas stages[J]. PLoS One,2014,9(1):e84921. [30] 杨成聪,戴振炎,王爱民,等.甲壳类水产动物蜕壳研究进展[J].盐城工学院学报(自然科学版),2019,32(4):42-46. [31] HUANG SS Y, BENSKIN J P, VELDHOEN N, et al. A multi-omic approach to elucidate low-dose effects of xenobiotics in zebrafish (Danio rerio) larvae[J]. Aquatic Toxicology,2017,182:102-112. [32] 李思发,蔡完其,邹曙明,等.阳澄湖中华绒螯蟹品质分析[J].中国水产科学,2000,7(3):71-74. [33] RANDALL D J, TSUI T K N. Ammonia toxicity in fish[J]. Marine Pollution Bulletin,2002,45(1/2/3/4/5/6/7/8/9/10/11/12):17-23. [34] RICHARD N, SILVA T S, WULFF T, et al. Nutritional mitigation of winter thermal stress in gilthead seabream:associated metabolic pathways and potential indicators of nutritional state[J]. Journal of Proteomics,2016,142:1-14. [35] 李尧,贾睿,杜金梁,等.白芍提取物对罗非鱼氧化损伤的保护作用[J].淡水渔业,2019,49(4):62-68. [36] SCHIEBER M, CHANDEL N S. ROS function in redox signaling and oxidative stress[J]. Current Biology,2014,24(10):R453-R462. [37] JIA X Y, ZHANG D, WANG F, et al. Immune responses of Litopenaeus vannameito non-ionic ammonia stress:a comparative study on shrimps in freshwater and seawater conditions[J]. Aquaculture Research,2017,48(1):177-188. [38] GILL SS, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry, 2010,48(12):909-930. [39] HEAD T B, MYKLES D L, TOMANEK L. Proteomic analysis of the crustacean molting gland (Y-organ) over the course of the molt cycle[J]. Comparative Biochemistry and Physiology Part D:Genomics and Proteomics,2019,29:193-210. [40] LEÓN-VAZ A, ROMERO L C, GOTOR C, et al. Effect of cadmium in the microalga Chlorella sorokiniana:a proteomic study[J]. Ecotoxicology and Environmental Safety,2021,207:111301. [41] ZHANG Z W, LIU Q, CAI J Z, et al. Chlorpyrifos exposure in common carp (Cyprinus carpio L. ) leads to oxidative stress and immune responses[J]. Fish & Shellfish Immunology,2017,67:604-611. [42] 孙元琛,徐冰洁,曹艺筹,等.饲料中添加纳米氧化铈对氨氮与嗜水气单胞菌胁迫下中华绒螯蟹的保护效应[J].南方水产科学,2022,18(3):94-101.