Genomic Identification and Expression Analysis of Collagen Genes Family in Chinese Mitten Crab Eriocheir sinensis
LIN Lehe, WU Qinjun, WANG Chun, ZOU Huafeng
National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
Abstract:To explore the molecular basis of the hard and thick exoskeleton of Chinese mitten crab Eriocheir sinensis, collagen gene (COL) family members were identified in Chinese mitten crab by bioinformatics. The physicochemical properties, chromosomal location, gene structure, and phylogenetic relationships of the encoded proteins were analyzed, and transcriptome data from muscles, gills, hepatopancreas, and zoea larvae of Chinese mitten crab and swimming crab Portunus trituberculatus were quantified using Salmon software. The results showed that there was significant evolutionary divergence in the phylogenetic relationships of COL gene family members among six species: swimming crab, Chinese mitten crab, green mud crab Scylla paramamosain, Chinese shrimp Fenneropenaeus chinensis, Pacific white shrimp Litopenaeus vannamei, and red swamp crayfish Procambarus clarkii. Transcriptomics revealed that high expression of COL4 was observed in muscle, gills, and hepatopancreas of both crab species, highlighting its key role in maintaining tissue structural integrity. The expression levels of all COL genes were found to be significantly higher in Chinese mitten crab than those in swimming crabin the zoea stage. In addition, expression of the EsCOL23A1 gene was not detected in muscle, gill, and hepatopancreas tissues. It is speculated that the EsCOL23A1 gene may be expressed in the exoskeletal tissues of zoea, playing an adhesive role in inorganic mineral adhesion. In summary, collagen, as a key structural component of crustacean tissue organs and exoskeletons, plays a crucial role in maintaining tissue integrity and improves inorganic mineral deposition in the exoskeleton. The finding provides essential theoretical foundations for advancing the understanding of crustacean exoskeleton developmental mechanisms and their regulatory networks.
林乐和, 吴勤俊, 王春, 邹华锋. 中华绒螯蟹胶原蛋白基因家族的鉴定与分析[J]. 水产科学, 2025, 44(6): 881-889.
LIN Lehe, WU Qinjun, WANG Chun, ZOU Huafeng. Genomic Identification and Expression Analysis of Collagen Genes Family in Chinese Mitten Crab Eriocheir sinensis. Fisheries Science, 2025, 44(6): 881-889.
[1] BLIDI O E, OMARI N E, BALAHBIB A, et al. Extraction methods, characterization and biomedical applications of collagen:a review[J]. Biointerface Research in Applied Chemistry,2021,11(5):13587-13613. [2] BELLA J. Collagen structure:new tricks from a very old dog[J]. The Biochemical Journal,2016,473(8):1001-1025. [3] 吴刚,王小锋,郎雷鸣,等.溶剂和溶液酸碱性对碳酸钙晶型和形状影响研究[J].化学研究与应用,2010,22(10):1310-1314. [4] EXPOSITO J Y, CLUZEL C, GARRONE R, et al. Evolution of collagens[J]. The Anatomical Record,2002,268(3):302-316. [5] 陈斌,蔺诗韵,方仲祺,等.龙虾外骨骼矿化几丁质纤维片旋转结构研究[J].稀有金属材料与工程,2018,47(增刊):453-456. [6] XUE J R, JIANG T, CHEN X B, et al. Multi-mineral fingerprinting analysis of the Chinese mitten crab (Eriocheir sinensis) in Yangcheng Lake during the year-round culture period[J]. Food Chemistry,2022,390:133167. [7] 高保全,刘萍,李健,等.三疣梭子蟹4个野生群体形态差异分析[J].中国水产科学,2007,14(2):223-228. [8] 杨品红,李梦军,黄春红,等.大通湖中华绒螯蟹(Eriocheir sinensis)品质分析与评价[J].海洋与湖沼,2014,45(3):637-643. [9] 沈洁,朱冬发,胡则辉,等.三疣梭子蟹蜕皮周期的分期[J].水产学报,2011,35(10):1481-1487. [10] 田志环,康现江,焦传珍.中华绒螯蟹蜕皮过程中体壁结构和主要成分的变化[J].水生生物学报,2013,37(5):899-904. [11] PRATOOMCHAT B, SAWANGWONG P, PAKKONG P, et al. Organic and inorganic compound variations in haemolymph, epidermal tissue and cuticle over the molt cycle in Scylla serrata (Decapoda)[J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology,2002,131(2):243-255. [12] YLÖNEN R, KYRÖNLAHTI T, SUND M, et al. Type XIII collagen strongly affects bone formation in transgenic mice[J]. Journal of Bone and Mineral Research,2005,20(8):1381-1393. [13] LV Y Y, LI Y P, FANG M, et al. Chromosome-level genome assembly reveals adaptive evolution of the invasive Amazon sailfin catfish (Pterygoplichthys pardalis)[J]. Communications Biology,2025,8(1):616. [14] 任泽林,李爱杰.饲料组成对中国对虾肌肉组织中胶原蛋白、肌原纤维和失水率的影响[J].中国水产科学,1998,5(2):40-44. [15] 郑海波,夏文水.中华绒螯蟹肌肉组织特性及其肉质嫩度的比较[J].水产学报,2009,33(1):151-156. [16] TAMURA K, STECHER G, KUMAR S.MEGA11:molecular evolutionary genetics analysis version 11[J]. Molecular Biology and Evolution,2021,38(7):3022-3027. [17] PATRO R, DUGGAL G, LOVE M I, et al. Salmon provides fast and bias-aware quantification of transcript expression[J]. Nature Methods,2017,14(4):417-419. [18] 刘邦辉,郁二蒙,王广军,等.草鱼Ⅰ型胶原蛋白α1基因cDNA全序列克隆、组织分布及其生物信息学分析[J].水产学报,2012,36(6):849-858. [19] SHOULDERS M D, RAINES R T. Collagen structure and stability[J]. Annual Review of Biochemistry,2009,78:929-958. [20] LIU H, LI M Y, TANG K Y, et al. Evolution of conformation and thermal properties of bovine hides collagen in the sodium sulphide solution[J]. Journal of Molecular Liquids,2022,367:120449. [21] 潘成佳,吉丽娜,华子春.人源胶原蛋白家族的结构域及进化分析[J].药物生物技术,2024,31(4):331-337. [22] MYLLYHARJU J, KIVIRIKKO K I.Collagens and collagen-related diseases[J]. Annals of Medicine,2001,33(1):7-21. [23] BOUDKO S P, DANYLEVYCH N, HUDSON B G, et al. Chapter 10 basement membrane collagen IV:isolation of functional domains[J]. Methods in Cell Biology,2018,143:171-185. [24] CHEN P Y, LIN A Y, MCKITTRICK J, et al. Structure and mechanical properties of crab exoskeletons[J]. Acta Biomaterialia,2008,4(3):587-596. [25] TOM M, MANFRIN C, CHUNG S J, et al. Expression of cytoskeletal and molt-related genes is temporally scheduled in the hypodermis of the crayfish Procambarus clarkii during premolt[J]. The Journal of Experimental Biology,2014,217(Pt 23):4193-4202.