Effects of Dibutyl Phthalate Exposure on Fatty Acid Metabolism in Water Fleas Daphnia magna
WANG Chenchen1, SHEN Chenchen1,2, GUO Tingting1, GENG Shirong1, YANG Miao3, WANG Yuan1, WEI Jie1
1. Key Laboratory of Hydrobiology in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; 2. School of Life Science, Tsinghua University, Beijing 100084, China; 3. Key Laboratory of Plant Biotechnology in Liaoning Province, School of Life Science, Liaoning Normal University, Dalian 116081, China
Abstract:Fatty acids are sensitive to environmental changes and serve as important indicators for organisms to adapt to variable environments. To investigate the effects of dibutyl phthalate (DBP) on the lipid metabolism in aquatic organisms, water fleas Daphnia magna was exposed to DBP at concentrations ranging from 0.2 to 1.0 mg/L (including a blank control) for 5 days. Subsequently, the composition and content of fatty acids in the organisms were analyzed. The results showed that D. magna contained 9 polyunsaturated fatty acids (46% of total, mainly α-Linolenic acid), 4 monounsaturated fatty acids (28%, mainly oleic acid), and 3 saturated fatty acids (26%, mainly palmitic acid). DBP significantly altered the fatty acid composition ratios (P<0.05),significantly higher proportion of saturated fatty acids (P<0.05), increased proportions of palmitic and stearic acids (P<0.05), and significantly reduced polyunsaturated fatty acids (e.g., α-Linolenic acid) in 0.8 mg/L DBP group (P<0.05). Analysis of fatty acid content demonstrated that total fatty acids, saturated fatty acids, monounsaturated fatty acids and polyunsaturated fatty acids contents in the 0.2—1.0 mg/L DBP groups all showed an initial increase followed by a decrease with the increasing DBP concentration; the 0.6 mg/L DBP group exhibited the highest monounsaturated fatty acids and polyunsaturated fatty acids contents, with significant increases in oleic acid, palmitoleic acid, α-linolenic acid and linoleic acid (P<0.05); water fleas in 0.8 mg/L DBP group showed the highest saturated fatty acids content, with palmitic acid and stearic acid being significantly elevated (P<0.05). In present study, 0.8 mg/L DBP represented the critical threshold for fatty acid metabolism disruption in D. magna. DBP induces toxic effects by interfering with fatty acid metabolism, suggesting that polyunsaturated fatty acid (particularly α-linolenic acid) may serve as potential biomarkers for DBP stress. The findings will help to better understand the toxic effects and toxic mechanisms of phthalate esters, and provide scientific basis for water pollution control and environmental monitoring.
[1] 叶常明.环境中的邻苯二甲酸酯[J].环境科学进展,1993(2):36-47. [2] 刘慧杰,舒为群.邻苯二甲酸二丁酯生殖发育毒性研究进展[J].环境与健康杂志,2004,21(2):122-124. [3] 余刚,黄俊,张彭义.持久性有机污染物:倍受关注的全球性环境问题[J].环境保护,2001,29(4):37-39. [4] 柳月,李成,霍广元,等.地膜类型和使用方式对土壤中邻苯二甲酸酯累积及土壤理化性质的影响[J].江苏农业科学,2023,51(22):229-236. [5] STAPLES C A, PETERSON D R, PARKERTON T F, et al. The environmental fate of phthalate esters:a literature review[J]. Chemosphere,1997,35(4):667-749. [6] 王立鑫,杨旭.邻苯二甲酸酯毒性及健康效应研究进展[J].环境与健康杂志,2010,27(3):276-281. [7] 李欣,申晨晨,魏杰,等.邻苯二甲酸酯对浮游生物的毒性效应研究进展[J].水产科学,2020,39(6):953-963. [8] PALUSELLI A, AMINOT Y, GALGANI F, et al. Occurrence of phthalate acid esters (PAEs) in the northwestern Mediterranean Sea and the Rhone River[J]. Progress in Oceanography,2018,163:221-231. [9] NANTABA F, PALM W U, WASSWA J, et al. Temporal dynamics and ecotoxicological risk assessment of personal care products, phthalate ester plasticizers, and organophosphorus flame retardants in water from Lake Victoria, Uganda[J]. Chemosphere,2021,262:127716. [10] WU X L, HONG H J, LIU X T, et al. Graphene-dispersive solid-phase extraction of phthalate acid esters from environmental water[J]. The Science of the Total Environment,2013,444:224-230. [11] SHI W, DENG D Y, WANG Y T, et al. Causes of endocrine disrupting potencies in surface water in East China[J]. Chemosphere,2016,144:1435-1442. [12] 昌盛,樊月婷,付青,等.北江清远段地表水及沉积物中酞酸酯的分布特征与风险评估[J].生态环境学报,2019,28(4):822-830. [13] 崔竞丹,魏杰,赵文.邻苯二甲酸二丁酯(DBP)对蒙古裸腹溞的毒性及其跨代影响[J].环境科学学报,2020,40(9):3473-3480. [14] LIU Y J, CHEN Z X, LI S W, et al. Multi-omics profiling and biochemical assays reveal the acute toxicity of environmental related concentrations of Di-(2-ethylhexyl) phthalate (DEHP) on the gill of crucian carp (Carassius auratus)[J]. Chemosphere,2022,307:135814. [15] 苏洪波,王兴强,曹梅,等.PAEs对四角蛤蜊毒性和免疫的影响[J].淮海工学院学报(自然科学版),2015,24(4):83-86. [16] 涂海峰,刘成,王宇擎,等.氧化石墨烯对邻苯二甲酸二丁酯藻毒性的影响[J].环境科学,2018,39(8):3927-3936. [17] WANG Q, YAO X F, JIANG N, et al. Environmentally relevant concentrations of butyl benzyl phthalate triggered oxidative stress and apoptosis in adult zebrafish (Danio rerio) liver:combined analysis at physiological and molecular levels[J]. Science of the Total Environment,2023,858:160109. [18] 陈慧.环境水体中典型邻苯二甲酸酯的污染水平及其复合暴露对斑马鱼的生殖毒性[D].镇江:江苏大学,2020. [19] 蒲诗雅.邻苯二甲酸酯对斑马鱼生长发育及糖代谢的毒性效应研究[D].重庆:中国科学院大学(中国科学院重庆绿色智能技术研究院),2020:17-45. [20] ZHOU Y X,LEI L, ZHU B R, et al. Aggravated visual toxicity in zebrafish larvae upon co-exposure to titanium dioxide nanoparticles and bis(2-ethylhexyl)-2, 3, 4, 5-tetrabromophthalate[J]. Science of the Total Environment,2024,921:171133. [21] LI B, HU X Q, LIU R X, et al. Occurrence and distribution of phthalic acid esters and phenols in Hun River Watersheds[J]. Environmental Earth Sciences,2015,73(9):5095-5106. [22] FILIMONOVA V, GONÇALVES F, MARQUES J C, et al. Fatty acid profiling as bioindicator of chemical stress in marine organisms:a review[J]. Ecological Indicators,2016,67:657-672. [23] WANG Z S, WANG Y S, YAN C Z. Simulating ocean acidification and CO2 leakages from carbon capture and storage to assess the effects of pH reduction on cladoceran Moina mongolica Daday and its progeny[J]. Chemosphere,2016,155:621-629. [24] MILLS E L, FORNEY J L. Trophic dynamics and development of freshwater pelagic food webs[M]//CARPENTER S R. Complex Interactions in Lake Communities. New York, NY:Springer New York,1988:11-30. [25] Organization for Economic Cooperation and Development. Test No.202:Daphnia sp.,Acute Immobilization [EB/OL]. (2004)[2025-07-08]. https://www.oecd.org/en/publications/test-no-202-daphnia-sp-acute-immobilisation-test_9789264069947-en.html. [26] WEI J, SHEN Q, BAN Y L, et al. Characterization of acute and chronic toxicity of DBP to Daphnia magna[J]. Bulletin of Environmental Contamination and Toxicology,2018,101(2):214-221. [27] YANG M, WEI J, WANG Y, et al. Short-term starvation affects fatty acid metabolism of Daphnia magna neonates and juveniles[J]. Aquatic Sciences,2021,83(1):15. [28] 蒋广震,刘文斌,王煜衡,等.饲料中蛋白脂肪比对斑点叉尾鮰幼鱼生长、消化酶活性及肌肉成分的影响[J].水产学报,2010,34(7):1129-1135. [29] 郑爱榕,李文权,陈清花,等.海洋饵料动物脂肪酸的气相色谱分析[J].海洋技术,2000,19(2):31-38. [30] 刘飞,徐善良,王丹丽,等.摄食紫菜粉等4种单一饵料的蚤状溞脂肪酸组成的比较[J].应用海洋学学报,2014,33(1):90-95. [31] 冯悦,黄仲园,华雪铭,等.大型溞的营养成分分析及其作为渔用饲料原料的潜在利用价值[J].水产学报,2018,42(4):565-574. [32] 黄显清,王武,成永旭.不同喂养条件和营养强化对大型溞总脂及脂肪酸组成的影响[J].上海水产大学学报,2001,10(1):49-54. [33] 王丹丽,徐善良,徐继林,等.不同食物条件下蚤状溞的脂肪酸组成比较研究[J].水产科学,2005,24(9):14-16. [34] 王丽娟.绿色微囊藻等食物对大型溞生长生殖、脂肪营养及幼体抗逆性的影响[D].上海:上海水产大学,2005. [35] GOULDEN C E,PLACE A R. Fatty acid synthesis and accumulation rates in daphniids[J]. Journal of Experimental Zoology,1990,256(2):168-178. [36] COWGILL U M, WILLIAMS D M, ESQUIVEL J B. Effects of maternal nutrition on fat content and longevity of neonates of Daphnia magna[J]. Journal of Crustacean Biology,1984,4(2):173-190. [37] SUNDBOM M, VREDE T. Effects of fatty acid and phosphorus content of food on the growth, survival and reproduction of Daphnia[J]. Freshwater Biology,1997,38(3):665-674. [38] UPCHURCH R G. Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress[J]. Biotechnology Letters,2008,30(6):967-977. [39] MIKAMI K, MURATA N. Membrane fluidity and the perception of environmental signals in cyanobacteria and plants[J]. Progress in Lipid Research,2003,42(6):527-543. [40] RANA M S, BHUSHAN S, SUDHAKAR D R, et al. Effect of iron oxide nanoparticles on growth and biofuel potential of Chlorella spp.[J]. Algal Research,2020,49:101942. [41] PAREJA-CARRERA J, MATEO R, RODRÍGUEZ-ESTIVAL J. Lead (Pb) in sheep exposed to mining pollution:implications for animal and human health[J]. Ecotoxicology and Environmental Safety,2014,108:210-216. [42] HERNÁNDEZ M L, PADILLA M N, SICARDO M D, et al. Effect of different environmental stresses on the expression of oleate desaturase genes and fatty acid composition in olive fruit[J]. Phytochemistry,2011,72(2/3):178-187. [43] SCHLECHTRIEM C, ARTS M T, ZELLMER I D. Effect of temperature on the fatty acid composition and temporal trajectories of fatty acids in fasting Daphnia pulex (Crustacea, Cladocera)[J]. Lipids,2006,41(4):397-400. [44] FERAIN A, DE SAEYER N, LARONDELLE Y, et al. Body lipid composition modulates acute cadmium toxicity in Daphnia magna adults and juveniles[J]. Chemosphere,2018,205:328-338. [45] TAIPALE S J, VUORIO K, STRANDBERG U, et al. Trophic transfer of polychlorinated biphenyls (PCBs) alters fatty acid metabolism in Daphnia magna[J]. Environmental Science & Technology, 2016, 50(24):13500-13508. [46] PRADHAN A, OLSSON P E, JASS J. Di(2-ethylhexyl) phthalate and diethyl phthalate disrupt lipid metabolism, reduce fecundity and shortens lifespan of Caenorhabditis elegans[J]. Chemosphere,2018,190:375-382. [47] BARATA C, CARLOS NAVARRO J, VARO I, et al. Changes in antioxidant enzyme activities, fatty acid composition and lipid peroxidation in Daphnia magna during the aging process[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2005,140(1):81-90. [48] RIKANS L E, HORNBROOK K R. Lipid peroxidation, antioxidant protection and aging[J]. Biochimica et Biophysica Acta—Molecular Basis of Disease,1997,1362(2/3):116-127. [49] ZHENG Q, FENG M B, DAI Y. Comparative antioxidant responses in liver of Carassius auratus exposed to phthalates:an integrated biomarker approach[J]. Environmental Toxicology and Pharmacology,2013,36(3):741-749. [50] WANG Y, WANG T Y, BAN Y L, et al. Di-(2-ethylhexyl) phthalate exposure modulates antioxidant enzyme activity and gene expression in juvenile and adult Daphnia magna[J]. Archives of Environmental Contamination and Toxicology,2018,75(1):145-156. [51] GU S R, ZHENG H, XU Q Q, et al. Comparative toxicity of the plasticizer dibutyl phthalate to two freshwater algae[J]. Aquatic Toxicology,2017,191:122-130. [52] SHEN C C, WEI J, WANG T Y, et al. Acute toxicity and responses of antioxidant systems to dibutyl phthalate in neonate and adult Daphnia magna[J]. PeerJ,2019,7:e6584.