王攀攀, 杨婷, 陈欢语, 胡清源, 李文嘉, 虞文涛, 刘威, 朱瑾, 邢超凡, 高焕, 阎斌伦. 非生物因素对养殖虾蟹类健康影响的研究进展[J]. 水产科学, 2026, 45(1): 148-162.
WANG Panpan, YANG Ting, CHEN Huanyu, HU Qingyuan, LI Wenjia, YU Wentao, LIU Wei, ZHU Jin, XING Chaofan, GAO Huan, YAN Binlun. Effects of Abiotic Factors on Health of Farmed Shrimps and Crabs: Research Progress. Fisheries Science, 2026, 45(1): 148-162.
[1] 农业农村部渔业渔政管理局,全国水产技术推广总站,中国水产学会.2024中国渔业统计年鉴[M].北京:中国农业出版社,2024. [2] 王克行.虾蟹类增养殖学[M].北京:中国农业出版社,1997:314. [3] 侯懿玲,程文志,魏祎铭,等.虾蟹蜕皮周期分期鉴定技术研究进展[J].水产科学,2024,43(2):319-332. [4] 李嘉铭.胰岛素信号通路调控中华绒螯蟹蜕壳的机制研究[D].大连:大连海洋大学,2024. [5] 杨成聪,戴振炎,王爱民,等.甲壳类水产动物蜕壳研究进展[J].盐城工学院学报(自然科学版),2019,32(4):42-46. [6] BENRABAA S A M, MYKLES D L. Effect of blocking transforming growth factor-β/Activin-Myostatin signaling on the expression of ecdysteroid metabolism and responsive genes in the crustacean molting gland (Y-organ)[J]. General and Comparative Endocrinology,2025,362:114675. [7] 张凯军.水温对中华绒螯蟹蜕壳生长及肠道微生物的影响[D].上海:上海海洋大学,2021. [8] 李青,陈永祥.温度对虾蟹生长发育影响的研究进展[J].江苏农业科学,2019,47(10):26-31. [9] 庞兴.虾蟹养殖水质问题及影响[J].渔业致富指南,2024(5):36-38. [10] REN X Y, WANG Q, SHAO H X, et al. Effects of low temperature on shrimp and crab physiology, behavior, and growth:a review[J]. Frontiers in Marine Science,2021,8:746177. [11] 朱海涛,张旭晖,王欣欣,等.河蟹养殖闷热天气指数[J].江苏农业科学,2017,45(7):159-164. [12] 伍烨菱,赵峰,庄平.虾蟹类早期发育阶段的栖息地选择利用研究进展[J].渔业信息与战略,2021,36(4):257-266. [13] 刘永鑫,张殿福,陶忠虎,等.温度对克氏原螯虾胚胎和幼体发育的影响[J].华中农业大学学报,2021,40(5):146-153. [14] 栗治国,张成松,张岩,等.温度对脊尾白虾胚胎及幼体发育的影响研究[J].海洋科学,2013,37(10):9-16. [15] 尹飞,王春琳,周帅,等.黑斑口虾蛄幼体不同发育阶段的温度、盐度耐受性研究[J].水产科学,2005,24(11):4-6. [16] 张凯军,姜鹏飞,王军,等.不同温度对中华绒螯蟹生长及肠道微生物菌群的影响[J].上海海洋大学学报,2022,31(2):384-393. [17] 赵思哲,柳森,张庆起,等.影响日本囊对虾养殖的环境因素分析及其健康养殖技术[J].水产养殖,2020,41(10):20-23. [18] MEIDIANA D, MASITHAH E D, ISRONI W. The effect of temperature differences on oxygen consumption level (OCL) and stress level in the process of spawning vaname shrimp (Litopenaeus vannamei)[J]. IOP Conference Series:Earth and Environmental Science,2023,1273(1):012069. [19] LIU J H, SHI C, YE Y F, et al. Effects of temperature on growth, molting, feed intake, and energy metabolism of individually cultured juvenile mud crab Scylla paramamosain in the recirculating aquaculture system[J]. Water,2022,14(19):2988. [20] 黄东科,梁华芳,张志,等.温度对波纹龙虾存活、摄食、蜕壳和生长的影响[J].生态学报,2017,37(18):5973-5980. [21] ANDERSEN Ø, JOHNSEN H, WITTMANN A C, et al. De novo transcriptome assemblies of red king crab (Paralithodes camtschaticus) and snow crab (Chionoecetes opilio) molting gland and eyestalk ganglia—temperature effects on expression of molting and growth regulatory genes in adult red king crab[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2022,257:110678. [22] WITTMANN A C, BENRABAA S A M, LÓPEZ-CERÓN D A, et al. Effects of temperature on survival, moulting, and expression of neuropeptide and mTOR signalling genes in juvenile Dungeness crab (Metacarcinus magister)[J]. The Journal of Experimental Biology,2018,221(Pt 21):jeb187492. [23] MANIAM J, MORRIS M J. The link between stress and feeding behaviour[J]. Neuropharmacology,2012,63(1):97-110. [24] 徐镇,江宁锦,何锦锋,等.外源因子介导调控ROS对中国鲎血淋巴细胞参数的影响[J].水产学报,2021,45(12):1973-1982. [25] CHENG W, WANG L U, CHEN J C. Effect of water temperature on the immune response of white shrimp Litopenaeus vannamei to Vibrio alginolyticus[J]. Aquaculture,2005,250(3/4):592-601. [26] AYRES B S, VARELA A S Jr, CORCINI C D, et al. Effects of high temperature and LPS injections on the hemocytes of the crab Neohelice granulata[J]. Journal of Invertebrate Pathology,2024,205:108144. [27] LI B, XIAN J N, GUO H, et al. Effect of temperature decrease on hemocyte apoptosis of the white shrimp Litopenaeus vannamei[J]. Aquaculture International,2014,22(2):761-774. [28] PAN L Q, HU F W, JING F T, et al. The effect of different acclimation temperatures on the prophenoloxidase system and other defence parameters in Litopenaeus vannamei[J]. Fish & Shellfish Immunology,2008,25(1/2):137-142. [29] ZHANG L W, SHA Z L, CHENG J. Time-course and tissue-specific molecular responses to acute thermal stress in Japanese mantis shrimp Oratosquilla oratoria[J]. International Journal of Molecular Sciences,2023,24(15):11936. [30] SHIELDS J D. Climate change enhances disease processes incrustaceans: case studies in lobsters, crabs, and shrimps[J]. Journal of Crustacean Biology, 2019,39(6):673-683. [31] AL-MASQARI Z A, GUO H P, WANG R Y, et al. Effects of high temperature on water quality, growth performance, enzyme activity and the gut bacterial community of shrimp (Litopenaeus vannamei)[J]. Aquaculture Research,2022,53(9):3283-3296. [32] QYLI M, ALIKO V, FAGGIO C. Physiological and biochemical responses of Mediterranean green crab, Carcinus aestuarii, to different environmental stressors:evaluation of hemocyte toxicity and its possible effects on immune response[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology,2020,231:108739. [33] 丁小丰,杨玉娇,金珊,等.温度变化对锯缘青蟹免疫因子的胁迫影响[J].水产科学,2010,29(1):1-6. [34] LI J T, XU X W, LI W T, et al. Linking energy metabolism and locomotor variation to osmoregulation in Chinese shrimp Fenneropenaeus chinensis[J]. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology,2019,234:58-67. [35] 李志辉,王玉,李光光,等.温度和盐度对脊尾白虾生长和非特异性免疫的影响[J].海洋湖沼通报,2019,41(6):78-82. [36] LIU Y, WANG B J, JIANG K Y, et al. Effects of salinity training on growth performance, osmotic regulation, and pathogen resistance of post-larval Litopenaeus vannamei[J]. Aquaculture,2023,562:738770. [37] GUO H, XIAN J N, ZHENG P H, et al. Dietary copper affects antioxidant status of shrimp (Penaeus monodon) reared in low salinity water[J]. Aquaculture Reports,2022,22:100979. [38] DENG Z T, ZHANG Z H, ZHAO R Y, et al. Effects of high-salinity on the expression of aquaporins and ion transport-related genes in Chinese shrimp (Fenneropenaeus chinensis)[J]. Aquaculture Reports,2023,30:101577. [39] 蒋湘,谢妙,彭树锋,等.盐度对日本囊对虾生长与存活率的影响[J].江苏农业科学,2017,45(16):152-155. [40] CHEN W W, LI X, QIN K X, et al. Effects of low salinity on fatty acid and free amino acid composition of muscle tissues in Portunus trituberculatus [J]. Aquaculture Research,2022,53(5):1627-1635. [41] LI Y Y, AI C X, LIU L J. Mud crab, Scylla paramamosain China′s leading maricultured crab[J]. Aquaculture in China:success stories and modern trends,2018:226-233. [42] PAITAL B,CHAINY G B N. Effects of salinity on O2 consumption, ROS generation and oxidative stress status of gill mitochondria of the mud crab Scylla serrata [J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology,2012,155(2):228-237. [43] 赵玉超,王仁杰,沈敏,等.高盐对凡纳滨对虾仔虾生长、渗透调节及免疫相关酶活性的影响[J].水产学报,2019,43(4):833-840. [44] 张年国,周裕华,于飞,等.低盐和高盐条件下不同脊尾白虾群体生长特性研究[J].广东农业科学,2022,49(10):135-145. [45] SHENTU J, XU Y J, DING Z N. Effects of salinity on survival, feeding behavior and growth of the juvenile swimming crab, Portunus trituberculatus (Miers,1876)[J]. Chinese Journal of Oceanology and Limnology,2015,33(3):679-684. [46] ZHOU J M, LI N, WANG H, et al. Effects of salinity on growth, nutrient composition, fatty acid composition and energy metabolism of Scylla paramamosain during indoor overwintering[J]. Aquaculture Research,2020,51(5):1834-1843. [47] 亓磊,顾孝连,蒋科技,等.盐度对拟穴青蟹幼蟹存活、生长和Na+/K+-ATP酶活性的影响[J].海洋科学,2013,37(2):56-60. [48] 刘栋梁,黄建华,杨丽诗,等.多种环境因子对克氏原螯虾蜕壳死亡的影响及对策研究[J].南方水产科学,2020,16(2):29-35. [49] ROMANO N, ZENG C S. The effects of salinity on the survival, growth and haemolymph osmolality of early juvenile blue swimmer crabs, Portunus pelagicus[J]. Aquaculture,2006,260(1/2/3/4):151-162. [50] 黎兰诗,戴习林.盐度对不同蜕皮时期罗氏沼虾生理生化及蜕皮相关基因表达的影响[J].南方农业学报,2022,53(8):2302-2311. [51] 龙晓文,吴旭干,刘智俊,等.盐度对脊尾白虾存活、生长和蜕壳的影响[J].广东农业科学,2014,41(23):111-115. [52] RAMAGLIA A C, DE CASTRO L M, AUGUSTO A. Effects of ocean acidification and salinity variations on the physiology of osmoregulating and osmoconforming crustaceans[J]. Journal of Comparative Physiology B:Biochemical, Systemic, and Environmental Physiology,2018,188(5):729-738. [53] 李庭古,马甡.不同盐度对克氏螯虾幼虾代谢率的影响[J].海洋湖沼通报,2009(3):174-178. [54] SHI Y H,ZHANG G Y, XU J B, et al. Effects of salinity on survival, growth, haemolymph osmolality, gill Na+-K+-ATPase activity, respiration and excretion of the sword prawn Parapenaeopsis hardwickii [J]. Aquaculture Research,2022,53(2):603-611. [55] SHEN M J, WANG Y, TANG Y K, et al. Effects of different salinity reduction intervals on osmoregulation, anti-oxidation and apoptosis of Eriocheir sinensis megalopa[J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology,2024,291:111593. [56] BOONSANIT P, PAIROHAKUL S. Effects of salinity on haemolymph osmolality, gill Na+/K+ ATPase and antioxidant enzyme activities in the male mud crab Scylla olivacea (Herbst, 1796)[J]. Marine Biology Research,2021,17(1):86-97. [57] WANG J L, LIU Q, ZHANG X N, et al. Metabolic response in the gill of Portunus trituberculatus under short-term low salinity stress based on GC-MS technique[J]. Frontiers in Marine Science,2022,9:881016. [58] RAN H M, LI Z C, YANG F, et al. Molecular pathways of osmoregulation in response to salinity stress in the gills of the scalloped spiny lobster (Panulirus homarus) within survival salinity[J]. Comparative Biochemistry and Physiology Part D:Genomics and Proteomics,2024,52:101308. [59] YAO H Z, LI X, CHEN Y H, et al. Metabolic changes in Scylla paramamosain during adaptation to an acute decrease in salinity[J]. Frontiers in Marine Science,2021,8:734519. [60] HURTADO M A, RACOTTA I S, CIVERA R, et al. Effect of hypo- and hypersaline conditions on osmolality and Na+/K+-ATPase activity in juvenile shrimp (Litopenaeus vannamei) fed low- and high-HUFA diets[J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology,2007,147(3):703-710. [61] CHAUDHARI A, GIREESH-BABU P, TRIPATHI G, et al. Expression studies on Na+/K+-ATPase in gills of Penaeus monodon (Fabricius) acclimated to different salinities[J]. Indian Journal of Experimental Biology,2015,53(5):273-280. [62] 牛林洋,董宏标,郑晓婷,等.光照在甲壳动物养殖中的应用研究进展[J].渔业现代化,2024,51(1):1-10. [63] 屈亚芬.光色对甲壳动物行为影响的研究及应用[D].大连:大连海洋大学,2023. [64] WANG F, DONG S, HUANG G, et al. The effect of light color on the growth of Chinese shrimp Fenneropenaeus chinensis[J]. Aquaculture,2003,228(1/2/3/4):351-360. [65] 王芳,王馨,刘恒彤,等.光色对三疣梭子蟹幼蟹生长和能量收支的影响[J].中国海洋大学学报(自然科学版),2014,44(11):25-29. [66] GUO B, WANG F, DONG S L, et al. The effect of rhythmic light color fluctuation on the molting and growth of Litopenaeus vannamei[J]. Aquaculture,2011,314(1/2/3/4):210-214. [67] TOYOTA K, USAMI K, MIZUSAWA K, et al. Effect of blue light on the growth of the red swamp crayfish Procambraus clarkii larvae-seasonal and sexual differences[J]. Zoological Studies,2022,60:e3. [68] CHEN S J, SHI C, MIGAUD H, et al. Light spectrumimpacts on growth, molting, and oxidative stress response of the mud crab Scylla paramamosain[J]. Frontiers in Marine Science,2022,9:840353. [69] DOU J, ZHANG G L, SHI C, et al. High-intensity light of full-spectrum LED promotes survival rate but not development of the larval swimming crab Portunus trituberculatus[J]. Aquacultural Engineering,2021,93:102158. [70] FILIPPI J J, MILLOT R, BRACCONI J, et al. Effect of light intensity on the survival of European spiny lobster (Palinurus elephas) larvae reared in aquaculture system[J]. Aquaculture Reports,2024,36:102083. [71] 汪迎港.循环水系统中光照强度和周期对波纹龙虾生长、生理指标及其生物钟基因的影响[D].大连:大连海洋大学,2024. [72] XU H Y, DOU J, WU Q Y, et al. Investigation of the light intensity effect on growth, molting, hemolymph lipid, and antioxidant capacity of juvenile swimming crab Portunus trituberculatus[J]. Frontiers in Marine Science,2022,9:922021. [73] DOS ANJOS SANTOS A, LÓPEZ-OLMEDA J F, SÁNCHEZ-VÁZQUEZ F J, et al. Synchronization to light and mealtime of the circadian rhythms of self-feeding behavior and locomotor activity of white shrimps (Litopenaeus vannamei)[J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology,2016,199:54-61. [74] GARDNER C, MAGUIRE G B. Effect of photoperiod and light intensity on survival, development and cannibalism of larvae of the Australian giant crab Pseudocarcinus gigas (Lamarck)[J]. Aquaculture,1998,165(1/2):51-63. [75] ZHAO Y, DOU J, XU H Y, et al. Light intensity and photoperiod interaction affects the survival, development, molting and apoptosis-related genes of swimming crab Portunus trituberculatus larvae[J]. Fishes,2023,8(5):221. [76] 庞智予,刘锦龙,张瑜,等.不同光照周期对脊尾白虾生长、性腺发育以及血淋巴生化成分的影响[J].渔业科学进展,2022,43(5):189-196. [77] CHEN S J, LIU J H, SHI C, et al. Effect of photoperiod on growth, survival, and lipid metabolism of mud crab Scylla paramamosain juveniles[J]. Aquaculture,2023,567:739279. [78] 赖晓芳,沈善瑞,吕海波.氨态氮和pH对脊尾白虾氮磷代谢的影响[J].安徽农业科学,2013,41(13):5745-5746. [79] LI W Y, WANG J J, LI J T, et al. The effect of astaxanthin on the alkalinity stress resistance of Exopalaemon carinicauda[J]. Science of the Total Environment,2024,917:170415. [80] 张智翔,苏妮,李文鑫,等.二氧化碳对三疣梭子蟹生理影响的研究进展[J].黑龙江水产,2023,42(6):425-428. [81] MCLUCKIE C, MOLTSCHANIWSKYJ N, GASTON T, et al. Effects of reduced pH on an estuarine penaeid shrimp (Metapenaeus macleayi)[J]. Environmental Pollution,2021,268(Pt B):115929. [82] YU Q R, XIE J, HUANG M X, et al. Growth and health responses to a long-term pH stress in Pacific white shrimp Litopenaeus vannamei[J]. Aquaculture Reports,2020,16:100280. [83] STREFEZZA T F, DE ANDRADE I M, AUGUSTO A. Reduced pH and elevated salinities affect the physiology of intertidal crab Minuca mordax (Crustacea, Decapoda)[J]. Marine and Freshwater Behaviour and Physiology,2019,52(5):241-254. [84] 张秀红,李吉涛,王佳佳,等.长期碳酸盐碱度胁迫对脊尾白虾生长及卵巢发育的影响[J].水产学报,2024,48(4):136-146. [85] WANG X D, HUANG Z P, WANG C L, et al. A comparative study on growth and metabolism of Eriocheir sinensis juveniles under chronically low and high pH stress[J]. Frontiers in Physiology,2020,11:885. [86] LIEW H J, RAHMAH S, TANG P W, et al. Low water pH depressed growth and early development of giant freshwater prawn Macrobrachium rosenbergii larvae[J]. Heliyon,2022,8(7):e09989. [87] ALI M Y, PAVASOVIC A, MATHER P B, et al. Expression patterns of two carbonic anhydrase genes, Na+/K+-ATPase and V-type H+-ATPase,in the freshwater crayfish, Cherax quadricarinatus, exposed to low pH and high pH[J]. Australian Journal of Zoology,2017,65(1):50. [88] QIN Z, GE Q Q, WANG J J, et al. Comparative transcriptomic and proteomic analysis of Exopalaemon carinicauda in response to alkalinity stress[J]. Frontiers in Marine Science,2021,8:759923. [89] LI Z X, WANG J Y, JIA C S, et al. Detection of favorable QTL alleles and candidate genes for high pH tolerance in Chinese shrimp Fenneropenaeus chinensis via association and linkage maps[J]. Aquaculture Reports,2025,41:102676. [90] ALI B, ANUSHKA, MISHRA A. Effects of dissolved oxygen concentration on freshwater fish:a review[J]. International Journal of Fisheries and Aquatic Studies, 2022,10(4):113-127. [91] 徐慧,邓浩然,王忠培,等.养殖水体溶解氧含量预测研究[J].浙江农业科学,2025,66(1):184-188. [92] 陈壁波,黄璇卿,曾运萍.虾类养殖水体水质及底泥条件对养殖生态系统的影响[J].水产养殖,2018,39(9):15-18. [93] WANG P P, LIU H T, ZHAO S Z, et al. Hypoxia stress affects the physiological responses, apoptosis and innate immunity of kuruma shrimp, Marsupenaeus japonicus[J]. Fish & Shellfish Immunology,2022,122:206-214. [94] HAN S Y, WANG B J, LIU M, et al. Effect of cyclicserious/medium hypoxia stress on the survival, growth performance and resistance against Vibrio parahemolyticus of white shrimp Litopenaeus vannamei[J]. Invertebrate Survival Journal,2017,14(1):259-270. [95] NGUYEN T V, ALFARO A C, RODRÁGUEZ J, et al. Changes in metabolic profiling of whiteleg shrimp (Penaeus vannamei) under hypoxic stress[J]. Journal of Invertebrate Pathology,2022,193:107798. [96] TOMASETTI S J, MORRELL B K, MERLO L R, et al. Individual and combined effects of low dissolved oxygen and low pH on survival of early stage larval blue crabs, Callinectes sapidus[J]. PLoS One,2018,13(12):e0208629. [97] PASCHKE K, CUMILLAF J P, LOYOLA S, et al. Effect of dissolved oxygen level on respiratory metabolism, nutritional physiology, and immune condition of southern king crab Lithodes santolla (Molina,1782) (Decapoda, Lithodidae)[J]. Marine Biology,2010,157(1):7-18. [98] 滕淑芹,王玮,方旭,等.水温和溶解氧对州河鲤鱼胚胎和胚后发育的影响[J].中国水产,2019(3):83-84. [99] DETMER T M, PARKOS J J, WAHL D H. Long-term data show effects of atmospheric temperature anomaly and reservoir size on water temperature, thermal structure, and dissolved oxygen[J]. Aquatic Sciences,2021,84(1):3. [100]虞哲,张燕,姜茗馨,等.含盐度对溶解氧的影响[J].科学咨询(科技·管理),2014(9):39-40. [101] ONABULE O A, MITCHELL S B, COUCEIRO F. The effects of freshwater flow and salinity on turbidity and dissolved oxygen in a shallow macrotidal estuary:a case study of Portsmouth Harbour[J]. Ocean & Coastal Management,2020,191:105179. [102] CHEN S J, YU Y Y, GAO Y J, et al. Exposure to acute ammonia stress influences survival, immune response and antioxidant status of Pacific white shrimp (Litopenaeus vannamei) pretreated with diverse levels of inositol[J]. Fish & Shellfish Immunology,2019,89:248-256. [103] CHEN J C, TING Y Y, LIN J N, et al. Lethal effects of ammonia and nitrite on Penaeus chinensis juveniles[J]. Marine Biology,1990,107(3):427-431. [104] ZHANG T X, LI M R, LIU C, et al. A review of the toxic effects of ammonia on invertebrates in aquatic environments[J]. Environmental Pollution,2023,336:122374. [105] LIN W, LUO H M, WU J Y, et al. A review of the emerging risks of acute ammonia nitrogen toxicity to aquatic decapod crustaceans[J]. Water,2023,15(1):27. [106] WANG T, SHAN H W, GENG Z X, et al. Dietary supplementation with freeze-dried Ampithoe sp. enhances the ammonia-N tolerance of Litopenaeus vannamei by reducing oxidative stress and endoplasmic reticulum stress and regulating lipid metabolism[J]. Aquaculture Reports,2020,16:100264. [107] ZHANG Y, LIU J Y, ZHUO H B, et al. Differential toxicity responses between hepatopancreas and gills in Litopenaeus vannamei under chronic ammonia-N exposure[J]. Animals,2023,13(24):3799. [108] LIANG C F, LIU J Y, CAO F J, et al. Transcriptomic analyses of the acute ammonia stress response in the hepatopancreas of the kuruma shrimp (Marsupenaeus japonicus)[J]. Aquaculture,2019,513:734328. [109] SHEN C C, TANG D, BAI Y Z, et al. Comparative transcriptome analysis of the gills of Procambarus clarkii provide novel insights into the response mechanism of ammonia stress tolerance[J]. Molecular Biology Reports,2021,48(3):2611-2618. [110] TANG D, WU Y, WU L, et al. The effects of ammonia stress exposure on protein degradation, immune response, degradation of nitrogen-containing compounds and energy metabolism of Chinese mitten crab[J]. Molecular Biology Reports,2022,49(7):6053-6061. [111] ZHANG J Y, ZHANG M Q, JAYASUNDARA N, et al. Physiological and molecular responses in the gill of the swimming crab Portunus trituberculatus during long-term ammonia stress[J]. Frontiers in Marine Science,2021,8:797241. [112] LU Y L, LIU Y Y, CAO J W, et al. Waterborne ammonia toxicity damages crustacean hemocytes via lysosome-dependent autophagy:a case study of swimming crabs Portunus trituberculatus[J]. Environmental Research,2025,272:120985. [113] LU Y L, ZHANG J Y, CAO J W, et al. Long-term ammonia toxicity in the hepatopancreas of swimming crab Portunus trituberculatus:cellular stress response and tissue damage[J]. Frontiers in Marine Science,2022,8:757602. [114] ZHANG Y Q, CAO J W, MENG X L, et al. Chronic ammonia toxicity disturbed energy homeostasis and damaged the hepatopancreas of swimming crab Portunus trituberculatus[J]. Aquaculture Reports,2023,32:101680. [115] CHENG C H, MA H L, SU Y L, et al. Ammonia toxicity in the mud crab (Scylla paramamosain):the mechanistic insight from physiology to transcriptome analysis[J]. Ecotoxicology and Environmental Safety,2019,179:9-16. [116] LIN W, WU J Y, LUO H M, et al. Sub-chronic ammonia exposure induces hepatopancreatic damage, oxidative stress, and immune dysfunction in red swamp crayfish (Procambarus clarkii)[J]. Ecotoxicology and Environmental Safety,2023,254:114724. [117] MUGNIER C, ZIPPER E, GOARANT C, et al. Combined effect of exposure to ammonia and hypoxia on the blue shrimp Litopenaeus stylirostris survival and physiological response in relation to molt stage[J]. Aquaculture,2008,274(2/3/4):398-407. [118] WEI S S, ZHANG J, CHEN W X, et al. Adverse effects of chronic ammonia stress on juvenile oriental river prawn (Macrobrachium nipponense) and alteration of glucose and ammonia metabolism[J]. Environmental Toxicology,2023,38(3):545-554. [119] LI Y M, XIANG Y Q, JIANG Q C, et al. Comparison of immune defense and antioxidant capacity between broodstock and hybrid offspring of juvenile shrimp (Macrobrachium nipponense):response to acute ammonia stress[J]. Animal Genetics,2022,53(3):380-392. [120] ZHAO M M, ZHENG Z H, WANG C Q, et al. Penaeid shrimp counteract high ammonia stress by generating and using functional peptides from hemocyanin, such as HMCs27[J]. Science of the Total Environment,2023,905:167073. [121] 董玉波,戴媛媛.亚硝酸盐氮对水产经济动物毒性影响的研究概况[J].水产养殖,2011(4):28-32. [122] 刘永华.测定水生态环境中亚硝酸盐氮三种方法的解析与探讨[J].水资源开发与管理,2025,11(6):32-38. [123] 黄翔鹄,李长玲,郑莲,等.亚硝酸盐氮对凡纳滨对虾毒性和抗病相关因子影响[J].水生生物学报,2006,30(4):466-471. [124] 覃昆飞.生活饮用水中“三氮”(氨氮、硝酸盐氮、亚硝酸盐氮)的来源、危害及控制[N].山西科技报,2024-04-02(A05). [125] JIANG Y, LIU X C, SHANG Y, et al. Physiological and transcriptomic analyses provide insights into nitrite stress responses of the swimming crab Portunus trituberculatus[J]. Marine Biotechnology,2024,26(5):1040-1052. [126] CHENG S Y, CHEN J C. Study on the oxyhemocyanin, deoxyhemocyanin, oxygen affinity and acid-base balance of Marsupenaeus japonicus following exposure to combined elevated nitrite and nitrate[J]. Aquatic Toxicology,2002,61(3/4):181-193. [127] MALLASEN M, VALENTI W C. Effect of nitrite on larval development of giant river prawn Macrobrachium rosenbergii[J]. Aquaculture, 2006,261(4):1292-1298. [128] HOU D W, LI H Y, WANG S, et al. Nitrite nitrogen stress disrupts the intestine bacterial community by altering host-community interactions in shrimp[J]. Science of the Total Environment,2024,925:171536. [129] CHENG C H, SU Y L, MA H L, et al. Effect of nitrite exposure on oxidative stress,DNA damage and apoptosis in mud crab (Scylla paramamosain)[J]. Chemosphere,2020,239:124668. [130] XING Y F, FENG Y F, TIAN J, et al. Nitrite and sulfide stress affects physiological and metabolic functions of gills in crab Eriocheir sinensis[J]. Aquaculture,2025,594:741437. [131] CHEN J C, LEI S C. Toxicity of ammonia and nitrite to Penaeus monodon juveniles[J]. Journal of the World Aquaculture Society, 1990,21(4):300-306. [132] 方成,黎兰诗,梁震宇,等.不同浓度亚硝酸盐亚急性胁迫对凡纳滨对虾生长与免疫功能的影响[J].渔业科学进展,2022,43(4):180-189. [133] 彭自然,臧维玲,高杨,等.氨和亚硝酸盐对凡纳滨对虾幼虾的毒性影响[J].上海水产大学学报,2004,13(3):274-278. [134] KOO J G, KIM S G, JEE J H, et al. Effects of ammonia and nitrite on survival, growth and moulting in juvenile tiger crab, Orithyia sinica (Linnaeus)[J]. Aquaculture Research,2005,36(1):79-85. [135] ROMANO N, ZENG C S. Subchronic exposure to nitrite, potassium and their combination on survival, growth, total haemocyte count and gill structure of juvenile blue swimmer crabs, Portunus pelagicus[J]. Ecotoxicology and Environmental Safety,2009,72(4):1287-1295. [136] 祝淑芳.水环境重金属污染现状及检测技术进展[J].中国设备工程,2021(7):165-166. [137] JEONG H,BYEON E, KIM D H, et al. Heavy metals and metalloid in aquatic invertebrates:a review of single/mixed forms, combination with other pollutants, and environmental factors[J]. Marine Pollution Bulletin,2023,191:114959. [138] 刘杰,方毅,宋博恒,等.基于全细胞生物传感器对环境中重金属污染检测的研究进展[J].农业与技术,2024,44(13):81-85. [139] 苏驰.水体重金属污染对水生生物生态毒性效应研究进展[J].当代化工研究,2023(22):12-14. [140] 李志辉,张培,阎斌伦,等.重金属对甲壳类毒理效应的研究进展[J].水产科技情报,2017,44(5):255-258. [141] WAQAS W, YUAN Y, ALI S, et al. Toxic effects of heavy metals on crustaceans and associated health risks in humans:a review[J]. Environmental Chemistry Letters,2024,22(3):1391-1411. [142] BANAEE M, ZEIDI A, MIKUKOVÁ N, et al. Assessing metal toxicity on crustaceans in aquatic ecosystems:a comprehensive review[J]. Biological Trace Element Research,2024,202(12):5743-5761. [143] FRÍAS-ESPERICUETA M G, ABAD-ROSALES S, NEVÁREZ-VELÁZQUEZ A C, et al. Histological effects of a combination of heavy metals on Pacific white shrimp Litopenaeus vannamei juveniles[J]. Aquatic Toxicology,2008,89(3):152-157. [144] ZHANG Y, LI Z Y, KHOLODKEVICH S, et al. Cadmium-induced oxidative stress,histopathology, and transcriptome changes in the hepatopancreas of freshwater crayfish (Procambarus clarkii)[J]. Science of the Total Environment,2019,666:944-955. [145] REN X Y, XU Y, ZHANG Y B, et al. Comparative accumulation and transcriptomic analysis of juvenile Marsupenaeus japonicus under cadmium or copper exposure[J]. Chemosphere,2020,249:126157. [146] RAZALI N S M, IKHWANUDDIN M, MAULIDIANI M, et al. Ecotoxicological impact of heavy metals on wild mud crabs (Scylla olivacea) in Malaysia:an integrative approach of omics, molecular docking and human risk assessment[J]. Science of the Total Environment,2024,946:174210. [147] SARAVANAN R, SUGUMAR V, BEEMA MAHIN M I. Heavy metal stress induced hyperglycemia in blue swimmer crab, Portunus pelagicus[J]. Acta Oceanologica Sinica,2018,37(5):47-53. [148] ZHANG J Y, BAO Z M, GUO J Y, et al. Comparative transcriptome analysis of the hepatopancreas from Macrobrachium rosenbergii exposed to the heavy metal copper[J]. Animals,2024,14(7):1117. [149] BU X Y, SONG Y, PAN J Y, et al. Toxicity of chronic copper exposure on Chinese mitten crab (Eriocheir sinensis) and mitigation of its adverse impact by myo-inositol[J]. Aquaculture,2022,547:737511. [150] BHOWMIK A, OJHA D, GOSWAMI D, et al. Inositol hexa phosphoric acid (phytic acid), a nutraceuticals, attenuates iron-induced oxidative stress and alleviates liver injury in iron overloaded mice[J]. Biomedicine & Pharmacotherapy,2017,87:443-450. [151] XUE Q, KANG R, KLIONSKY D J, et al. Copper metabolism in cell death and autophagy[J]. Autophagy,2023,19(8):2175-2195. [152] LIU Y J, WU Z X, GUO K, et al. Metallothionein-1 gene from Exopalaemon carinicauda and its response to heavy metal ions challenge[J]. Marine Pollution Bulletin,2022,175:113324.