Abstract:In order to investigate the diet composition of Japanese flying squid Todarodes pacificus in the Central and Southern Yellow Sea in summer,feeding characteristics and prey composition were analyzed in the Japanese flying squid sampled during the fisheries survey from 30 stations from July to August in 2022. Biological parameters measured in 251 specimens, and DNA analysis of stomach contents in 20 samples showed that the mantle length was ranged from 121 mm to 256 mm (mean: 182.51 mm), and body weight varied from 43 g to 408 g (mean: 153.84 g). The empty stomach rate was found to be 4.78%, with feeding intensity predominantly at levels 1—2; no empty stomachs were observed in individuals with a dorsal mantle length over 200 mm. Significant differences in feeding intensity were observed among mantle length cohorts and body weight groups (P<0.05), without significant effect on sexual maturity individuals (P<0.05). Notably, feeding indices exhibited a progressive rise with increase in both mantle length and body weight. Sequencing analysis showed that 11 prey species were identified by 12S rDNA and 16S rDNA primers, with Chordata as the dominant phylum. 100% of frequency in Engraulis japonicas, and 95% of frequency and the maximal relative sequence abundance in Enedrias fangi. The occurrence frequency of Takifugu was shown to be over 75%, with only 1.05% of relative sequence abundance. Cluster analysis revealed E. fangi as the dominant prey,with E. japonicus, S. niphonius and Nemopilema nomurai forming secondary food sources.High dietary similarity was observed among samples #1—#8, #11—#12 and #15—#17. Systematic analysis of prey composition in Japanese flying squid facilitates in-depth exploration of the intrinsic linkages between feeding behavior and key life history traits, including somatic growth, migratory patterns, and reproductive strategies. The findings provide crucial data for constructing ecological history models of Japanese flying squid and establishment of a theoretical foundation for the sustainable exploitation of fishery resources.
[1] 陈新军,刘必林,王尧耕.世界头足类[M].北京:海洋出版社,2009:318-319. [2] ARKHIPKIN A I, RODHOUSE P G K, PIERCE G J, et al. World squid fisheries[J]. Reviews in Fisheries Science and Aquaculture,2015,23(2):92-252. [3] SAKURAI Y, KIYOFUJI H, SAITOH S, et al. Changes in inferred spawning areas of Todarodes pacificus(Cephalopoda:Ommastrephidae) due to changing environmental conditions[J].ICES Journal of Marine Science,2000,57(1):24-30. [4] ROSA P G, O′DOR R, PIERCE G J. Advances in Squid Biology, Ecology and Fisheries: Part Ⅱ-Oegopsid Squid [M]. New York: Nova Science Publishers,2013:262. [5] DOLGANOVA N T, MOKRIN N M. Feeding of Todarodes pacificus (Cephalopoda, Ommastrephidae) in the sea of Japan in summer[J]. Zoologicheskiǐ Zhurnal,1999,78(9):1057-XI. [6] SONG H J, BAECK G W, KIM S A, et al. Feeding habits of Todarodes pacificus (Cephalopods:Ommastrephidae) in the coastal waters of Busan, Korea[J]. Korean Journal of Fisheries and Aquatic Sciences,2006,39(1):42-48. [7] 王尧耕,陈新军.世界大洋性经济柔鱼类资源及其渔业[M].北京:海洋出版社,2005:176-186. [8] 唐启升.中国区域海洋学-渔业海洋学[M].北京:海洋出版社,2012:335-383. [9] BOWER J R, ICHII T. The red flying squid (Ommastrephes bartramii):a review of recent research and the fishery in Japan[J]. Fisheries Research,2005,76(1):39-55. [10] RUIZ-COOLEY R I, MARKAIDA U, GENDRON D, et al. Stable isotopes in jumbo squid (Dosidicus gigas) beaks to estimate its trophic position:comparison between stomach contents and stable isotopes[J]. Journal of the Marine Biological Association of the United Kingdom,2006,86(2):437-445. [11] 杨纪明,谭雪静.渤海3种头足类食性分析[J].海洋科学,2000,24(4):53-55. [12] 黄美珍.台湾海峡及邻近海域主要无脊椎动物食性特征及其食物关系研究[J].海洋科学,2005,29(1):73-80. [13] MERTEN V, CHRISTIANSEN B, JAVIDPOUR J, et al. Diet and stable isotope analyses reveal the feeding ecology of the orangeback squid Sthenoteuthis pteropus (Steenstrup 1855) (Mollusca, Ommastrephidae) in the eastern tropical Atlantic[J]. PLoS One,2017,12(12):e0189691. [14] HOBSON K, WELCH H. Determination of trophic relationships within a high Arctic marine food web using δ13C and δ15N analysis[J].Marine Ecology Progress Series,1992,84(1):9-18. [15] 张宇美. 基于碳氮稳定同位素的南海鸢乌贼摄食生态与营养级研究[D].湛江:广东海洋大学,2014. [16] PARRY M. Trophic variation with length in two ommastrephid squids, Ommastrephes bartramii and Sthenoteuthis oualaniensis[J]. Marine Biology,2008,153(3):249-256. [17] 贡艺,李云凯,陈玲,等.东太平洋不同海区茎柔鱼肌肉脂肪酸组成分析与比较[J].渔业科学进展,2018,39(6):147-154. [18] PHILLIPS K L, NICHOLS P D, JACKSON G D. Size-related dietary changes observed in the squid Moroteuthis ingens at the Falkland Islands: stomach contents and fatty-acid analyses[J]. Polar Biology,2003,26(7):474-485. [19] CHEREL Y, HOBSON K A, GUINET C, et al. Stable isotopes document seasonal changes in trophic niches and winter foraging individual specialization in diving predators from the Southern Ocean[J]. Journal of Animal Ecology,2007,76(4):826-836. [20] PHILLIPS K L, JACKSON G D, NICHOLS P D. Predation on myctophids by the squid Moroteuthis ingens around Macquarie and Heard Islands:stomach contents and fatty acid analyses[J]. Marine Ecology Progress Series,2001,215:179-189. [21] DEAGLE B E, THOMAS A C, MCINNES J C, et al. Counting with DNA in metabarcoding studies:how should we convert sequence reads to dietary data?[J]. Molecular Ecology,2019,28(2):391-406. [22] EHRHARDT N M, JACQUEMIN P S, GARCQA B.F, et al. On the fishery and biology of the giant squid Dosidicus gigas in the Gulf of California, Mexico[J]. Journal of the Kansas Entomological Society, 1983,231: 306-340. [23] 唐峰华,刘尊雷,黄洪亮,等. 日本海太平洋褶柔鱼生物学特征的年际变化[J].动物学杂志,2015,50(3):381-389. [24] XIONG F, SHU L, ZENG H H, et al. Methodology for fish biodiversity monitoring with environmental DNA metabarcoding:the primers,databases and bioinformatic pipelines[J]. Water Biology and Security,2022,1(1):100007. [25] HARDY N, BERRY T, KELAHER B P, et al. Assessing the trophic ecology of top predators across a recolonisation frontier using DNA metabarcoding of diets[J]. Marine Ecology Progress Series,2017,573:237-254. [26] 邵昕宁,宋大昭,黄巧雯,等.基于粪便DNA及宏条形码技术的食肉动物快速调查及食性分析[J].生物多样性,2019,27(5):543-556. [27] XIONG M Y,WANG D J, BU H L, et al. Molecular dietary analysis of two sympatric felids in the Mountains of Southwest China biodiversity hotspot and conservation implications[J]. Scientific Reports,2017,7:41909. [28] GONG Y, RUIZ-COOLEY R I, HUNSICKER M E, et al. Sexual dimorphism in feeding apparatus and niche partitioning in juvenile jumbo squid Dosidicus gigas[J]. Marine Ecology Progress Series,2018,607:99-112. [29] IVANOVIC M L, BRUNETTI N E. Food and feeding of Illex argentinus[J].Antarctic Science,1994,6(2):185-193. [30] 陆化杰,孙天姿,刘凯,等.太平洋褶柔鱼胃组织微塑料的积聚特性[J].水产学报,2023,47(7):184-193. [31] 裴一凡,陈新军,桜井泰憲.太平洋褶柔鱼摄食行为观察研究[J].上海海洋大学学报,2014,23(1):139-145. [32] CARREÑO CASTILLA A, HERNÁNDEZ-URCERA J, GOURAGUINE A, et al. Predation behaviour of the European squid Loligo vulgaris[J]. Journal of Ethology,2020,38(3):311-322. [33] 方舟,陈新军,陆化杰,等.北太平洋两个柔鱼群体角质颚形态及生长特征[J].生态学报,2014,34(19):5405-5415. [34] ISOBE A.Recent advances in ocean-circulation research on the Yellow Sea and East China Sea shelves[J]. Journal of Oceanography,2008,64(4):569-584. [35] 杨林林,姜亚洲,程家骅.黄海南部太平洋褶柔鱼种群结构与繁殖生物学[J].生态学杂志,2010,29(6):1167-1174. [36] JEREB P, ROPER C F E. Cephalopods of the World. An Annotated and Illustrated Catalogue of Cephalopod Species Known to Date: Volume 2. Myopsid and Oegopsid Squids[M].Rome:FAO,2010. [37] GOTO T,KIDOKORO H, KASAHARA S. Changes in the distribution and abundance of Todarodes pacificus (Cephalopoda, Ommastrephidae) paralarvae in the southwest Sea of Japan with changing stock levels[J]. Fisheries Science,2002,68(Sup.1):198-201. [38] 刘梦娜,徐磊,王雪辉,等.基于DNA条形码研究中国枪乌贼和鸢乌贼的食物种类组成[J].热带海洋学报,2020,39(4):61-69. [39] 孙鹏,凌建忠,张辉,等.基于高通量测序的象山港海域黑鲷(Acanthopagrus schlegelii)食性分析[J].生态学报,2021,41(3):1221-1228. [40] 程济生,朱金声.黄海主要经济无脊椎动物摄食特征及其营养层次的研究[J].海洋学报,1997,19(6):102-108. [41] 操亮亮,力清影,刘必林.东太平洋公海茎柔鱼饵料中鱼类和头足类组成初步分析[J].应用生态学报,2021,32(12):4515-4522. [42] LI Y K, GONG Y, ZHANG Y Y, et al. Inter-annual variability in trophic patterns of jumbo squid (Dosidicus gigas) off the exclusive economic zone of Peru, implications from stable isotope values in gladius[J]. Fisheries Research,2017,187:22-30. [43] ROSAS-LUIS R, SALINAS-ZAVALA C A, KOCH V, et al. Importance of jumbo squid Dosidicus gigas (Orbigny,1835) in the pelagic ecosystem of the central Gulf of California[J]. Ecological Modelling,2008,218(1/2):149-161. [44] UCHIKAWA K, KIDOKORO H. Feeding habits of juvenile Japanese common squid Todarodes pacificus:relationship between dietary shift and allometric growth[J]. Fisheries Research,2014,152:29-36. [45] 方舟,陈新军.太平洋褶柔鱼渔业资源及渔场学研究进展[J].海洋渔业,2018,40(1):102-116. [46] IBARRA-GARCIA L E, CAMARILLO-COOP S, SALINAS-ZAVALA C A. Cannibalism assessment of jumbo squid Dosidicus gigas from the Gulf of California[J]. Hydrobiológica, 2014,24(1):51-56. [47] 杜成硕, 董秀强,任晓强,等. 黄海中南部太平洋褶柔鱼资源时空分布特征[J].烟台大学学报(自然科学与工程版),2025,38(2):186-193. [48] 刘刚,宁宇,夏晓飞,等.高通量测序技术在野生动物食性分析中的应用[J].生态学报,2018,38(9):3347-3356. [49] SOININEN E M, VALENTINI A, COISSAC E, et al. Analysing diet of small herbivores:the efficiency of DNA barcoding coupled with high-throughput pyrosequencing for deciphering the composition of complex plant mixtures[J]. Frontiers in Zoology,2009,6:16. [50] POMPANON F, DEAGLE B E, SYMONDSON W O C, et al. Who is eating what:diet assessment using next generation sequencing[J]. Molecular Ecology,2012,21(8):1931-1950. [51] DEAGLE B E, THOMAS A C, SHAFFER A K, et al. Quantifying sequence proportions in a DNA-based diet study using Ion Torrent amplicon sequencing:which counts count?[J]. Molecular Ecology Resources,2013,13(4):620-633. [52] EVANS N T, OLDS B P, RENSHAW M A, et al. Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding[J]. Molecular Ecology Resources,2016,16(1):29-41.