|
|
N and P Fluxes in Sediment-Water Interface of Sea Cucumber Ponds Exposed to Three Water Quality Control Methods |
LEI Zhaolin1, DANG Ziqiao2, ZHANG Dongsheng1,3, SUN Yahui1, LI Lezhou1, ZHANG Jinyuan4, WANG Yulong1, ZHOU Wei1 |
1. College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; 2. National Fisheries Technology Extension Center, China Society of Fisheries, Beijing 100000, China; 3. Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China; 4. School of Economics and Management, Dalian Ocean University, Dalian 116023, China |
|
|
Abstract In order to explore the exchange of N and P nutrients in the sediment-water interface of sea cucumber Apostichopus japonicus ponds (605 m × 85 m)under different water quality control methods, the diffusion flux of N and P nutrients in the sediment-water interface was investigated in water samples collected from the deepest part of the pond 3—5 days before the water change of each pond every month in sea cucumber ponds of Dalian Baofahai Treasures Co., Ltd. in Zhuanghe City(N 39.7866°, E 123.3208°), Liaoning province, under three water quality control methods: natural pond without any aeration system, microporous aeration (air compressor with 0.1 kw/667 m2) and water quality regulator (750 kW/h). It was found that there were variation in NOx- flux range of -36.0—10.8 mg/(m2·d) in natural pond without any aeration system and -12.0—7.8 mg/(m2·d) in microporous aeration ponds , negative flux in March, July and August, with the minimal flux value in July [-36.0, -12.0 mg/(m2·d)], and positive [0.6—5.4 mg/(m2·d)] throughout the year in the pond with the water quality regulator. Natural NH4+ fluxes were ranged from -102.6 mg/(m2·d) to 71.4 mg/(m2·d)in natural pond without any aeration system ponds and -90.6—78.0 mg/(m2·d)in bottom aeration aerators, with negative in July and August. However, positive flux was observed in the water quality regulator pond throughout the year, with the change range from 5.4 mg/(m2·d) to 81.6 mg/(m2·d). The PO43- flux was found to be positive throughout the year in the three sea cucumber ponds, with the maximum in July and August, with a variation of 8.6—76.2 mg/(m2·d) in natural tidal ponds, 30.0—73.2 mg/(m2·d) in microporous aeration ponds, and 29.4—50.4 mg/(m2·d) in water quality regulator pond. The N and P flux differences in sediment-water interface were very small in the pond with the water quality regulator compared to the other two ponds. The findings indicated that the water quality regulator contributed to the formation of a stable oxidizing environment at bottom of the ponds and was conducive to release of N and P substances at bottom of the ponds.
|
Received: 18 August 2020
|
|
|
|
|
[1]郭永坚,沈勇平,王芳,等.草鱼不同养殖模式实验围隔内沉积物—水界面营养盐通量的研究[J].水生生物学报,2013,37(4):595-605. [2]皮坤,张敏,李保民,等.主养草鱼与主养黄颡鱼池塘沉积物—水界面氮磷营养盐通量变化及与环境因子的关系[J].水产学报,2018,42(2):246-256. [3]张洁帆,李清雪,陶建华.渤海湾沉积物和水界面间营养盐交换通量及影响因素[J].海洋环境科学,2009,28(5):492-496. [4]蔡立胜,方建光,董双林.桑沟湾养殖海区沉积物—海水界面氮、磷营养盐的通量[J].海洋水产研究,2004,25(4):57-64. [5]邓华健.渤海湾沉积物—水界面营养盐交换通量的研究[D].天津:天津大学,2004. [6]汪雅露.胶州湾沉积物—海水界面营养盐的迁移特征及其影响因素解析[D].青岛:中国科学院大学(中国科学院海洋研究所),2016. [7]董慧.河口区沉积物—水界面营养盐交换通量研究——以李村河为例[D].青岛:中国海洋大学,2012. [8]王建军,沈吉,张路,等.云南滇池和抚仙湖沉积物—水界面营养盐通量及氧气对其的影响[J].湖泊科学,2010,22(5):640-648. [9]杨平,金宝石,谭立山,等.九龙江河口区养虾塘沉积物—水界面营养盐交换通量特征[J].生态学报,2017,37(1):192-203. [10]蒋增杰,方建光,毛玉泽,等.宁波南沙港养殖水域沉积物—水界面氮磷营养盐的扩散通量[J].农业环境科学学报,2010,29(12):2413-2419. [11]周劲风,温琰茂,李耀初.养殖池塘底泥—水界面营养盐扩散的室内模拟研究:Ⅰ氮的扩散[J].农业环境科学学报,2006,25(3):786-791. [12]魏南,余德光,谢骏,等.吉富罗非鱼温棚池塘上覆水—沉积物间隙水营养盐垂直分布特征及其界面交换通量[J].中国水产科学,2015(4):716-728. [13]林青,张东升,魏亚南,等.3种水质调控方式对刺参池塘浮游植物种群结构的影响[J].大连海洋大学学报,2019,34(4):566-572. [14]魏亚南,张东升,林青,等.3种水质调控方式下参池沉积物酶活性的比较研究[J].水产科学,2020,39(2):193-199. [15]陈国海.池塘养殖中微孔曝气增氧技术[J].养殖与饲料,2018(11):43-44. [16]王祖峰.仿刺参养殖池塘三种水质控制技术效果的比较[D].大连:大连海洋大学,2016. [17]党子乔,周玮,雷兆霖,等.三种水质调控方式对海参池塘沉积物中底泥耗氧率周年变化的影响[J].中国水产,2019(12):78-80. [18]毕丽仙.三种水质控制技术下参池沉积物酶活性及其微生物群落结构组成的比较[D].大连:大连海洋大学,2018. [19]张扬.不同盐度、底泥及扰动条件下再生水补水景观水体水质变化[D].西安:西安建筑科技大学,2017. [20]顾海涛,刘兴国,何雅萍,等.微孔曝气式增氧机的性能及应用效果[J].渔业现代化,2017,44(3):25-28. [21]张春雪.精养池塘底泥—水界面特征分析及底泥改良研究[D].武汉:华中农业大学,2013. [22]孙金凤.增氧机扰动对池塘水体悬浮物、溶氧时空分布格局的影响[D].武汉:华中农业大学,2012. [23]王绍友,徐继荣. 一种无边界扰动的单管沉积物采样器:CN200410026847.3 [P]. 2005-10-19. [24]国家海洋局. GB 17378.4—2007,海洋监测规范 第4部分:海水分析[S].北京:中国标准出版社,2007. [25]郭永坚,王芳,董双林,等.草鱼不同混养模式下围隔底泥反硝化、硝化和氨化速率[J].中国水产科学,2011,18(4):857-866. [26]郑忠明,董双林,白培峰,等.刺参不同养殖模式实验围隔内沉积物——水界面营养盐通量研究[J].中国海洋大学学报(自然科学版),2009,39(2):209-214. [27]Körner C, Arnone 3rd J A. Responses to elevated carbon dioxide in artificial tropical ecosystems[J]. Science,1992,257(5077):1672-1675. [28]孙芳,郑忠明,陆开宏,等.底泥微生物活性对蓝藻水华水柱及沉积物间隙水氮磷分布的影响[J].生态科学,2011,30(3):217-222. [29]张敬旺,谢骏,李志斐,等.家鱼池塘底泥耗氧率与理化因子的相关性分析[J].淡水渔业,2012,42(3):3-9. [30]鲁晓倩.三种水质调控方式下海参池塘浮游植物群落结构及初级生产力的初步研究[D]. 大连:大连海洋大学,2017. [31]李越蜀,郑忠明,翟海佳,等.不同模式凡纳滨对虾(Litopenaeus vannamei)养殖池塘沉积物酶活性及其微生物群落结构分析[J].海洋与湖沼,2012,43(6):1254-1260. [32]于听雷,高歌,王席,等.淀山湖沉积物—水界面氮磷通量及其生态环境效应研究[J].环境科学与管理,2017,42(10):145-150. [33]李聪,沈新强,晁敏,等.象山港河鲀养殖区沉积物—海水界面N、P营养盐的扩散通量[J].海洋环境科学,2010,29(6):848-852. [34]Holmer M, Marbá N, Terrados J, et al. Impacts of milkfish (Chanos chanos) aquaculture on carbon and nutrient fluxes in the Bolinao area, Philippines[J]. Marine Pollution Bulletin,2002,44(7):685-696. [35]吕莹.珠江口内沉积物—水界面营养盐的累积和迁移研究[D].广州:中国科学院广州地球化学研究所,2006. [36]钱嫦萍,陈振楼,胡玲珍,等.崇明东滩沉积物再悬浮对沉积物—水界面氮、磷交换行为的影响[J].环境科学,2003,24(5):114-119. [37]韩沙沙,温琰茂.富营养化水体沉积物中磷的释放及其影响因素[J].生态学杂志,2004,23(2):98-101. [38]唐晓,王佳.海水ORP的影响因素[J].装备环境工程,2004,1(4):37-39. [39]刘丹.三种水质控制技术下参池底质变化及参礁表面生态学特征初步研究[D].大连:大连海洋大学,2018. [40]蔡丹丹,田秀平,韩晓日,等.养殖池塘底泥脲酶活性与水体NH4+-N关系的研究[J].沈阳农业大学学报,2009,40(3):301-304. [41]吴耀国,王超,王惠民.河岸渗滤作用脱氮机理及其特点的试验[J].城市环境与城市生态,2003,16(6):298-300. [42]吴杨镝.辽宁海参养殖业形势分析(下)[J].科学养鱼,2016(12):1-2. [43]孙井梅,王志超,席兆胜,等.扰动对水体富营养化的改善作用[J].生态环境学报,2012(8):1447-1451. [44]王摆,田甲申,董颖,等.应用稳定同位素分析辽东湾池塘仿刺参的食性[J].水产科学,2019,38(2):236-240. |
|
|
|