|
|
Review on Research Progress of Fish Macrophage Markers |
DING Zhujin1,2,3, CUI Hujun1, GU Zhaotian1, ZHAO Xiaoheng2,3, CHENG Hanliang1,2,3 |
1. School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China; 2. Jiangsu Key Laboratory of Marine Biotechnology, Lianyungang 222005, China; 3. Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Lianyungang 222005, China |
|
[1]HERBOMEL P, THISSE B, THISSE C. Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process[J].Developmental Biology,2001,238(2):274-288. [2]ROCA F J, SEPULCRE M P, LÓPEZ-CASTEJÓN G, et al. The colony-stimulating factor-1 receptor is a specific marker of macrophages from the bony fish gilthead seabream[J].Molecular Immunology,2006,43(9):1418-1423. [3]KATZENBACK B A, BELOSEVIC M. Colony-stimulating factor-1 receptor protein expression is a specific marker for goldfish (Carassius auratus L.) macrophage progenitors and their differentiated cell types[J].Fish & Shellfish Immunology,2012,32(3):434-445. [4]CHEN Q, LU X J, LI M Y, et al. Molecular cloning, pathologically-correlated expression and functional characterization of the colony stimulating factor 1 receptor (CSF-1R) gene from a teleost, Plecoglossus altivelis[J].Zoological Research,2016,37(2):96-102. [5]CHEN Q, LU X J, CHEN J. Identification and functional characterization of the CSF1R gene from grass carp Ctenopharyngodon idellus and its use as a marker of monocytes/macrophages[J].Fish & Shellfish Immunology,2015,45(2):386-398. [6]WIEGERTJES G F, WENTZEL A S, SPAINK H P, et al. Polarization of immune responses in fish:the ‘macrophages first’ point of view[J].Molecular Immunology,2016,69:146-156. [7]HUANG M Y, MU P F, LI X F, et al. Functions of TNF-α1 and TNF-α2 in large yellow croaker (Larimichthys crocea) in monocyte/macrophage activation[J].Developmental & Comparative Immunology,2020,105:103576. [8]CHEN J, LV Y P, DAI Q M, et al. Host defense peptide LEAP-2 contributes to monocyte/macrophage polarization in barbel steed (Hemibarbus labeo)[J].Fish & Shellfish Immunology,2019,87:184-192. [9]CAMPOS-PEREZ J J, WARD M, GRABOWSKI P S, et al. The gills are an important site of iNOS expression in rainbow trout Oncorhynchus mykiss after challenge with the gram-positive pathogen Renibacterium salmoninarum[J].Immunology,2000,99(1):153-161. [10]CUI K, LI Q F, XU D, et al. Establishment and characterization of two head kidney macrophage cell lines from large yellow croaker (Larimichthys crocea)[J].Developmental & Comparative Immunology,2020,102:103477. [11]ZHANG L, NIE L, CAI S Y, et al. Role of a macrophage receptor with collagenous structure (MARCO) in regulating monocyte/macrophage functions in ayu, Plecoglossus altivelis[J].Fish & Shellfish Immunology,2018,74:141-151. [12]NGUYEN-CHI M, LAPLACE-BUILHE B, TRAVNIC KOVA J, et al. Identification of polarized macrophage subsets in zebrafish[J].eLife,2015,4:e07288. [13]ROUGEOT J, TORRACA V, ZAKRZEWSKA A, et al. RNAseq profiling of leukocyte populations in zebrafish larvae reveals a cxcl11 chemokine gene as a marker of macrophage polarization during mycobacterial infection[J].Frontiers in Immunology,2019,10:832. [14]ZOU J, HOLLAND J, PLEGUEZUELOS O, et al. Factors influencing the expression of interleukin-1β in cultured rainbow trout (Oncorhynchus mykiss) leucocytes[J].Developmental & Comparative Immunology,2000,24(6/7):575-582. [15]WU J, SHI Y H, ZHANG X H, et al. Molecular characterization of an IL-1β gene from the large yellow croaker (Larimichthys crocea) and its effect on fish defense against Vibrio alginolyticus infection[J].Zoological Research,2015,36(3):133-141. [16]LU X J, CHEN J, HE Y Q, et al. Molecular characterization of an IL-1β gene from ayu, Plecoglossus altivelis[J].Fish & Shellfish Immunology,2013,34(5):1253-1259. [17]COSTA M M, MAEHR T, DIAZ-ROSALES P, et al. Bioactivity studies of rainbow trout (Oncorhynchus mykiss) interleukin-6:effects on macrophage growth and antimicrobial peptide gene expression[J].Molecular Immunology,2011,48(15/16):1903-1916. [18]ZHU K, LU X J, LU J F, et al. The interleukin-6 regulates the function of monocytes/macrophages (MO/MФ) via the interleukin-6 receptor β in ayu (Plecoglossus altivelis)[J].Fish & Shellfish Immunology,2019,93:191-199. [19]WENTZEL A S, PETIT J, VAN VEEN W G, et al. Transcriptome sequencing supports a conservation of macrophage polarization in fish[J].Scientific Reports,2020,10:13470. [20]LU X J, CHEN Q, RONG Y J, et al. CXCR3.1 and CXCR3.2 differentially contribute to macrophage polarization in teleost fish[J].Journal of Immunology,2017,198(12):4692-4706. [21]JOERINK M, SAVELKOUL H F J, WIEGERTJES G F. Evolutionary conservation of alternative activation of macrophages:structural and functional characterization of arginase 1 and 2 in carp (Cyprinus carpio L.)[J].Molecular Immunology,2006,43(8):1116-1128. [22]FORLENZA M, FINK I R, RAES G, et al. Heterogeneity of macrophage activation in fish[J].Developmental & Comparative Immunology,2011,35(12):1246-1255. [23]MONTERO J, GÓMEZ-ABELLÁN V, ARIZCUN M, et al. Prostaglandin E2 promotes M2 polarization of macrophages via a cAMP/CREB signaling pathway and deactivates granulocytes in teleost fish[J].Fish & Shellfish Immunology,2016,55:632-641. [24]BENEDICENTI O, WANG T H, WANGKAHART E, et al. Characterisation of arginase paralogues in salmonids and their modulation by immune stimulation/infection[J].Fish & Shellfish Immunology,2017,61:138-151. [25]HODGKINSON J W, FIBKE C, BELOSEVIC M. Recombinant IL-4/13A and IL-4/13B induce arginase activity and down-regulate nitric oxide response of primary goldfish (Carassius auratus L.) macrophages[J].Developmental & Comparative Immunology,2017,67:377-384. [26]SCHMIDT J G, ANDERSEN E W, ERSBØLL B K, et al. Muscle wound healing in rainbow trout (Oncorhynchus mykiss)[J].Fish & Shellfish Immunology,2016,48:273-284. [27]DOWNING J R, ROUSSEL M F, SHERR C J. Ligand and protein kinase C downmodulate the colony-stimulating factor 1 receptor by independent mechanisms[J].Molecular and Cellular Biology,1989,9(7):2890-2896. [28]YANG K, FENG S Y, ZHANG S N, et al. Characterization of a new il-4/13 homologue in grass carp (Ctenopharyngodon idella) and its cooperation with M-CSF to promote macrophage proliferation[J].Fish & Shellfish Immunology,2019,93:508-516. [29]HANINGTON P C, HITCHEN S J, BEAMISH L A, et al. Macrophage colony stimulating factor (CSF-1) is a central growth factor of goldfish macrophages[J].Fish & Shellfish Immunology,2009,26(1):1-9. [30]GRAYFER L, HANINGTON P C, BELOSEVIC M. Macrophage colony-stimulating factor (CSF-1) induces pro-inflammatory gene expression and enhances antimicrobial responses of goldfish (Carassius auratus L.) macrophages[J].Fish & Shellfish Immunology,2009,26(3):406-413. [31]CHRISTODOULAKOS G, AUGOULEA A, LAMBRINOUDAKI I, et al. Pathogenesis of endometriosis:the role of defective ‘immunosurveillance’[J].The European Journal of Contraception & Reproductive Health Care,2007,12(3):194-202. [32]MEIJER A H, VAN DER SAR A M, CUNHA C, et al. Identification and real-time imaging of a myc-expressing neutrophil population involved in inflammation and mycobacterial granuloma formation in zebrafish[J].Developmental & Comparative Immunology,2008,32(1):36-49. [33]KUIL L E, OOSTERHOF N, FERRERO G, et al. Zebrafish macrophage developmental arrest underlies depletion of microglia and reveals Csf1r-independent metaphocytes[J].eLife,2020,9:e53403. [34]唐俭,陈旭昕,韩志海.巨噬细胞极化及极化调控的研究进展[J].转化医学杂志,2019,8(6):373-376. [35]WANG L X, ZHANG S X, WU H J, et al. M2b macrophage polarization and its roles in diseases[J].Journal of Leukocyte Biology,2019,106(2):345-358. [36]MURRAY P J. Macrophage polarization[J].Annual Review of Physiology,2017,79:541-566. [37]KONG X Y, GAO J. Macrophage polarization:a key event in the secondary phase of acute spinal cord injury[J].Journal of Cellular and Molecular Medicine,2017,21(5):941-954. [38]陈金艳,田翔宇,贺璐璐,等.M2型巨噬细胞向M1型巨噬细胞的转化及其意义[J].中华实验外科杂志,2016,33(4):953-955. [39]ZHANG Y H, HE M, WANG Y, et al. Modulators of the balance between M1 and M2 macrophages during pregnancy[J].Frontiers in Immunology,2017,8:120. [40]RSZER T. Understanding the mysterious M2 macrophage through activation markers and effector mechanisms[J].Mediators of Inflammation,2015,2015:816460. [41]COLIN S, CHINETTI-GBAGUIDI G, STAELS B. Macrophage phenotypes in atherosclerosis[J].Immunological Reviews,2014,262(1):153-166. [42]GRAFF J W, DICKSON A M, CLAY G, et al. Identifying functional microRNAs in macrophages with polarized phenotypes[J].Journal of Biological Chemistry,2012,287(26):21816-21825. [43]HUME D A. The many alternative faces of macrophage activation[J].Frontiers in Immunology,2015,6:370. [44]RIEGER A M, BARREDA D R. Antimicrobial mechanisms of fish leukocytes[J].Developmental & Comparative Immunology,2011,35(12):1238-1245. [45]YANG K, ZHANG S N, CHEN D Y, et al. IFN-γ-activated lymphocytes boost nitric oxide production in grass carp monocytes/macrophages[J].Fish & Shellfish Immunology,2013,35(5):1635-1641. [46]温振才.鲤鱼iNOS全长cDNA的获得及在感染条件下的差异表达分析[D].长春:吉林大学,2016. [47]TAFALLA C, COLL J, SECOMBES C J. Expression of genes related to the early immune response in rainbow trout (Oncorhynchus mykiss) after viral haemorrhagic septicemia virus (VHSV) infection[J].Developmental & Comparative Immunology,2005,29(7):615-626. [48]SAEIJ J P J, STET R J M, GROENEVELD A, et al. Molecular and functional characterization of a fish inducible-type nitric oxide synthase[J].Immunogenetics,2000,51(4):339-346. [49]HEINECKE R D, BUCHMANN K. Inflammatory response of rainbow trout Oncorhynchus mykiss (Walbaum, 1792) larvae against Ichthyophthirius multifiliis[J].Fish & Shellfish Immunology,2013,34(2):521-528. [50]CARRIERO M M, HENRIQUE-SILVA F, CAETANO A R, et al. Characterization and gene expression analysis of pacu (Piaractus mesopotamicus) inducible nitric oxide synthase (iNOS) following Aeromonas dhakensis infection[J].Fish & Shellfish Immunology,2018,74:94-100. [51]LIANG B, SU J G. Inducible nitric oxide synthase (iNOS) mediates vascular endothelial cell apoptosis in grass carp reovirus (GCRV)-induced hemorrhage[J].International Journal of Molecular Sciences,2019,20(24):6335. [52]VILCEK J, LEE T H. Tumor necrosis factor. New insights into the molecular mechanisms of its multiple actions[J].The Journal of Biological Chemistry,1991,266(12):7313-7316. [53]邱丽华,张汉华,吴进锋.鱼类肿瘤坏死因子基因和受体的研究进展[J].中国水产科学,2004,11(5):482-487. [54]罗先荣,彭家清,熊燕,等.积雪草酸对糖尿病肾病大鼠肾功能及巨噬细胞表面活化标志物水平的影响[J].临床与病理杂志,2019,39(5):920-927. [55]CARSWELL E A, OLD L J, KASSEL R L, et al. An endotoxin-induced serum factor that causes necrosis of tumors[J].Proceedings of the National Academy of Sciences of the United States of America,1975,72(9):3666-3670. [56]DING Z J, ZHAO X H, WANG J X, et al. Intelectin mediated phagocytosis and killing activity of macrophages in blunt snout bream (Megalobrama amblycephala)[J].Fish & Shellfish Immunology,2019,87:129-135. [57]ZHENG Y C, LIU Y L, LI H P, et al. Novel insights into the immune regulatory effects of Megalobrama amblycephala intelectin on the phagocytosis and killing activity of macrophages[J].Molecular Immunology,2021,137:145-154. [58]杨琼.鮸鱼IL-1及IL-17家族成员特征、表达及进化分析[D].舟山:浙江海洋大学,2017. [59]ZOU J, GRABOWSKI P S, CUNNINGHAM C, et al. Molecular cloning of interleukin 1β from rainbow trout Oncorhynchus mykiss reveals no evidence of an ice cut site[J].Cytokine,1999,11(8):552-560. [60]金伯泉.细胞和分子免疫学[M].2版.北京:科学出版社,2001. [61]MEHLER M F, KESSLER J A. Hematolymphopoietic and inflammatory cytokines in neural development[J].Trends in Neurosciences,1997,20(8):357-365. [62]颜鹏.草鱼IL-6的克隆及pcDNA-CiIL6、pcDNA-VP6与pcDNA-CiIL6-VP6的构建[D].湛江:广东海洋大学,2013. [63]BIRD S, ZOU J, SAVAN R, et al. Characterisation and expression analysis of an interleukin 6 homologue in the Japanese pufferfish, Fugu rubripes[J].Developmental & Comparative Immunology,2005,29(9):775-789. [64]宋后燕.分子医学导论[M].上海:复旦大学出版社,2006. [65]张金洲,陈新华.鱼类趋化因子的研究进展[J].生物技术通报,2006(增刊):129-132. [66]赫崇波,王强,刘卫东,等.鱼类趋化因子基因的研究[J].水产科学,2006,25(7):367-370. [67]KURODA N, UINUK-OOL T S, SATO A, et al. Identification of chemokines and a chemokine receptor in cichlid fish, shark, and lamprey[J].Immunogenetics,2003,54(12):884-895. [68]JENKINSON C P, GRODY W W, CEDERBAUM S D. Comparative properties of arginases[J].Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,1996,114(1):107-132. [69]黄凯.精氨酸酶的高效表达、性质及其产L-鸟氨酸的应用研究[D].无锡:江南大学,2017. [70]GLASS R D, KNOX W E. Arginase isozymes of rat mammary gland, liver, and other tissues[J].The Journal of Biological Chemistry,1973,248(16):5785-5789. [71]叶红,黎东,綦淑杰,等.CD163、sCD163与炎症性疾病的关系研究[J].中国临床实用医学,2015(2):78-80. [72]MOESTRUP S, MØLLER H. CD163:a regulated hemoglobin scavenger receptor with a role in the anti-inflammatory response[J].Annals of Medicine,2004,36(5):347-354. [73]于一涵,李秀.巨噬细胞可溶性CD163与自身免疫疾病关系的研究进展[J].疑难病杂志,2018,17(2):207-210. [74]刘小玲,曾令兵.甘露糖受体结构、功能、表达和应用研究的新进展[J].水产学杂志,2013,26(1):54-59. [75]李悦,高磊,李红昌,等.M2型巨噬细胞标志物CD206与肿瘤[J].国际肿瘤学杂志,2019,46(3):174-177. [76]YANG Y N, CHENG S Y, LIANG G K, et al. Celastrol inhibits cancer metastasis by suppressing M2-like polarization of macrophages[J].Biochemical and Biophysical Research Communications,2018,503(2):414-419. [77]ZHAO X H, LIU L C, HEGAZY A M, et al. Mannose receptor mediated phagocytosis of bacteria in macrophages of blunt snout bream (Megalobrama amblycephala) in a Ca2+-dependent manner[J].Fish & Shellfish Immunology,2015,43(2):357-363. |
|
|
|