|
|
Scientific and Technological Innovation Progress and Prospect of Fishery Products Processing and Circulation in China during the 13th Five-Year Plan |
WANG Zhenzhong 1, LU Miao1, LU Bingyou1, SUN Kangtai1, ZHAO Qiancheng2, MA Yongsheng2 |
1. China Rural Technology Development Center, Beijing 100045, China; 2. College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China |
|
[1] Food and Agriculture Organization of the United Nations. The State of World Fisheries and Aquaculture 2022 [R]. Rome: FAO, 2022. [2] 杨红生.现代水产种业硅谷建设的几点思考[J].海洋科学,2018,42(10):1-7. [3] 杨红生.我国蓝色粮仓科技创新的发展思路与实施途径[J].水产学报,2019,43(1):97-104. [4] 农业农村部渔业渔政管理局,全国水产技术推广总站,中国水产学会.2022中国渔业统计年鉴 [M].北京:中国农业出版社,2022:22-25. [5] WU B, XU Z K, CAO J, et al. Effects of β-1,3-glucan and ascorbic acid on the nutritional-immune response and antioxidant signaling pathways of live tiger grouper during simulated transport[J]. Aquaculture and Fisheries,2024,9(2):265-272. [6] 温敬敬,王蕾,王金厢,等.珍珠龙胆石斑鱼有水保活中肌肉品质及生理生化指标的变化[J].水产科学,2023,42(6):945-954. [7] 陈晗,吴嘉鑫,徐德峰,等.急冷与无水双重胁迫下南美白对虾存活变化及防御系统响应规律[J].食品科学,2022,43(13):170-176. [8] XU T Y, LI Y X, TIAN Y Y, et al. Effects of post-harvest hypoxic stress on post-landing recovery of live scallops (Mizuhopecten yessoensis) revealed by untargeted metabolomics based on UPLC-Q-TOF-MS[J]. Food Control,2021,123:107671. [9] 孟玉霞,崔惠敬,赵前程,等.植物精油在水产品保鲜中的研究进展[J].食品科学,2017,38(15):288-293. [10] ZHUANG S, TAN Y Q, HONG H, et al. Exploration of the roles of spoilage bacteria in degrading grass carp proteins during chilled storage:a combined metagenomic and metabolomic approach[J]. Food Research International,2022,152:110926. [11] ZHUANG S, TIAN L, LIU Y Y, et al. Amino acid degradation and related quality changes caused by common spoilage bacteria in chill-stored grass carp (Ctenopharyngodon idella)[J]. Food Chemistry,2023,399:133989. [12] LIU X C, HUANG Z, JIA S L, et al. The roles of bacteria in the biochemical changes of chill-stored bighead carp (Aristichthys nobilis):proteins degradation, biogenic amines accumulation, volatiles production, and nucleotides catabolism[J]. Food Chemistry,2018,255:174-181. [13] LUO X Y, XIAO S T, RUAN Q F, et al. Differences in flavor characteristics of frozen surimi products reheated by microwave,water boiling, steaming, and frying[J]. Food Chemistry,2022,372:131260. [14] AN Y Q, XIONG S B, QIAN Y P, et al. In vivo and in vitro aroma release in surimi gel with different cross-linking degrees by proton transfer reaction-mass spectrometry[J]. Food Chemistry,2022,373(Pt B):131502. [15] LI C S, ZHAO Y, WANG Y Q, et al. Microbial community changes induced by Pediococcus pentosaceus improve the physicochemical properties and safety in fermented tilapia sausage[J]. Food Research International,2021,147:110476. [16] LI Y, LENG W J, XUE J N, et al. A multi-omics-based investigation into the flavor formation mechanisms during the fermentation of traditional Chinese shrimp paste[J]. Food Research International,2023,166:112585. [17] WANG Y Q, SHEN Y Y, WU Y Y, et al. Comparison of the microbial community and flavor compounds in fermented mandarin fish (Siniperca chuatsi):three typical types of Chinese fermented mandarin fish products[J]. Food Research International,2021,144:110365. [18] HU M Y, WANG S Y, LIU Q, et al. Flavor profile of dried shrimp at different processing stages[J]. LWT-Food Science and Technology,2021,146:111403. [19] HUANG H Y, WANG Y X, SHI W Z. Effects of different drying methods on the quality and nonvolatile taste compounds of black carp[J]. Journal of Food Processing and Preservation,2021,45(6):e15507. [20] YU M M, LI D Y, LIU Z Q, et al. Effects of heat treatments on texture of abalone muscles and its mechanism[J]. Food Bioscience,2021,44:101402. [21] LIU C S, GU Z F, LIN X X, et al. Effects of high hydrostatic pressure (HHP) and storage temperature on bacterial counts, color change, fatty acids and non-volatile taste active compounds of oysters (Crassostrea ariakensis)[J]. Food Chemistry,2022,372:131247. [22] KLEIN J, CARVALHO L, ZAIA J. Application of network smoothing to glycan LC-MS profiling[J]. Bioinformatics,2018,34(20):3511-3518. [23] YAN L F, LI L Y, LI J H, et al. Bottom-up analysis using liquid chromatography—fourier transform mass spectrometry to characterize fucosylated chondroitin sulfates from sea cucumbers[J]. Glycobiology,2019,29(11):755-764. [24] WEI M, HUANG L J, LIU Y X, et al. Strategy for isolation, preparation, and structural analysis of chondroitin sulfate oligosaccharides from natural sources[J]. Analytical Chemistry,2020,92(17):11644-11653. [25] LIU Y J, JIN W H, DENG Z Z, et al. Preparation and neuroprotective activity of glucuronomannan oligosaccharides in an MPTP-induced Parkinson's model[J]. Marine Drugs,2020,18(9):438. [26] SONG S, PENG H R, WANG Q L, et al. Inhibitory activities of marine sulfated polysaccharides against SARS-CoV-2[J]. Food & Function,2020,11(9):7415-7420. [27] WANG B, WANG L, QU Y F, et al. Chitosan oligosaccharides exert neuroprotective effects via modulating the PI3K/Akt/Bcl-2 pathway in a Parkinsonian model[J]. Food & Function,2022,13(10):5838-5853. [28] BI R, YUE L, NIAZI S, et al. Facile synthesis and antibacterial activity of geraniol conjugated chitosan oligosaccharide derivatives[J]. Carbohydrate Polymers,2021,251:117099. [29] MAO S F, WANG B, YUE L, et al. Effects of citronellol grafted chitosan oligosaccharide derivatives on regulating anti-inflammatory activity[J]. Carbohydrate Polymers,2021,262:117972. [30] WANG Q C, WEI M S, YUE Y, et al. Structural characterization and immunostimulatory activity in vitro of a glycogen from sea urchin—Strongylocentyotus internedius[J]. Carbohydrate Polymers,2021,258:117701. [31] MA T X, FU Q Q, MEI Q G, et al. Extraction optimization and screening of angiotensin-converting enzyme inhibitory peptides from Channa striatus through bioaffinity ultrafiltration coupled with LC-Orbitrap-MS/MS and molecular docking[J]. Food Chemistry,2021,354:129589. [32] HUANG Y M, FAN S Q, LU G D, et al. Systematic investigation of the amino acid profiles that are correlated with xanthine oxidase inhibitory activity:effects, mechanism and applications in protein source screening[J]. Free Radical Biology & Medicine,2021,177:326-336. [33] WANG X S, ZHANG H W, SONG Y, et al. Comparative lipid profile analysis of four fish species by ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry[J]. Journal of Agricultural and Food Chemistry,2019,67(33):9423-9431. [34] WANG D D, WU F, ZHANG L Y, et al. Effects of dietary n-3 PUFA levels in early life on susceptibility to high-fat-diet-induced metabolic syndrome in adult mice[J]. The Journal of Nutritional Biochemistry,2021,89:108578. [35] WEN M, ZHAO Y C, SHI H H, et al. Short-term supplementation of DHA as phospholipids rather than triglycerides improve cognitive deficits induced by maternal omega-3 PUFA deficiency during the late postnatal stage[J]. Food & Function,2021,12(2):564-572. [36] 白贞,沈建,徐文其,等.电麻醉对珍珠龙胆石斑鱼麻醉效应与血液生化指标的影响[J].渔业现代化,2022,49(1):89-96. [37] XU D F, WU J X, SUN L J, et al. Combined stress of acute cold exposure and waterless duration at low temperature induces mortality of shrimp Litopenaeus vannamei through injuring antioxidative and immunological response in hepatopancreas tissue[J]. Journal of Thermal Biology,2021,100:103080. [38] GUAN W L, NONG W Q, WEI X B, et al. Impacts of a novel live shrimp (Litopenaeus vannamei) water-free transportation strategy on flesh quality:insights through stress response and oxidation in lipids and proteins[J]. Aquaculture,2021,533:736168. [39] 孟玉霞,崔惠敬,赵前程,等.植物精油对冷藏大黄鱼优势腐败菌的抑制作用及其机制[J].水产学报,2018,42(7):1140-1153. [40] ZHAO Y N, LAN W Q, SHEN J L, et al. Combining ozone and slurry ice treatment to prolong the shelf-life and quality of large yellow croaker (Pseudosciaena crocea)[J]. LWT,2022,154:112615. [41] 郑读,李北平,熊光权,等.辐照对小龙虾常温贮藏品质的影响[J].肉类研究,2021,35(6):44-49. [42] 曹荣,孟辉辉,刘淇,等.超高压处理对牡蛎冷藏过程腐败菌群结构的影响及典型菌株——腐败希瓦氏菌致死机理研究[J].中国食品学报,2019,19(2):192-198. [43] LUO H B, SHENG Z Z, GUO C X, et al. Quality attributes enhancement of ready-to-eat hairtail fish balls by high-pressure processing[J]. LWT-Food Science and Technology,2021,147:111658. [44] YE B B, CHEN J, YE H W, et al. Development of a time-temperature indicator based on Maillard reaction for visually monitoring the freshness of mackerel[J]. Food Chemistry,2022,373(Pt B):131448. [45] ZHU Y H, GONG S L, CHI K K, et al. Optimizing superframe and data buffer to achieve maximum throughput for 802.15.4-based energy harvesting wireless sensor networks[J]. IEEE Internet of Things Journal,2021,8(5):3689-3704. [46] ZHANG L J, ZHOU C F, NA X K, et al. High internal phase Pickering emulsions stabilized by a cod protein-chitosan nano complex for astaxanthin delivery[J]. Food & Function,2021,12(23):11872-11882. [47] TIE S S, SU W T, ZHANG X D, et al. pH-responsive core-shell microparticles prepared by a microfluidic chip for the encapsulation and controlled release of procyanidins[J]. Journal of Agricultural and Food Chemistry,2021,69(5):1466-1477. [48] 中华人民共和国农业农村部,国家卫生健康委员会,国家市场监督管理总局. 食品安全国家标准 水产品中氯硝柳胺残留量的测定 液体色谱-串联质谱法:GB 31656.7—2021[S].北京:中国标准出版社,2022:1-4. [49] 中华人民共和国农业农村部,国家卫生健康委员会,国家市场监督管理总局.食品安全国家标准 水产品中土霉素、四环素、金霉素和多西环素残留量的测定:GB 31656.11—2021[S].北京:中国标准出版社,2022:1-8. [50] 中华人民共和国农业农村部,国家卫生健康委员会,国家市场监督管理总局.食品安全国家标准 水产品中硝基呋喃类代谢物多残留的测定 液相色谱-串联质谱法:GB 31656.13—2021[S].北京:中国标准出版社,2022:1-4. [51] ZHANG R R, LI X J, SUN A L, et al. A highly selective fluorescence nanosensor based on the dual-function molecularly imprinted layer coated quantum dots for the sensitive detection of diethylstilbestrol/cypermethrin in fish and seawater[J]. Food Control,2022,132:108438. [52] XIE W Y, YOU Y X, BAN X F, et al. Structural basis for the cold activation and adaptation of an α-agarase from marine bacterium Catenovulum agarivorans STB13[J]. Food Bioscience,2023,53:102630. [53] JIANG C C, LIU Z, SUN J N, et al. A novel route for agarooligosaccharide production with the neoagarooligosaccharide-producing β-agarase as catalyst[J]. Catalysts,2020,10(2):214. [54] WANG S, LAN C Z, WANG Z J, et al. Optimizing eicosapentaenoic acid production by grafting a heterologous polyketide synthase pathway in the thraustochytrid Aurantiochytrium[J]. Journal of Agricultural and Food Chemistry,2020,68(40):11253-11260. [55] DING X T, FAN Y, JIANG E Y, et al. Expression of the Vitreoscilla hemoglobin gene in Nannochloropsis oceanica regulates intracellular oxygen balance under high-light[J]. Journal of Photochemistry and Photobiology. B: Biology,2021,221:112237. [56] WANG Q, JIAO X D, YAN B W, et al. Inhibitory effect of microwave heating on cathepsin l-induced degradation of myofibrillar protein gel[J]. Food Chemistry,2021,357:129745. [57] QU Y S, JI H W, SONG W K, et al. The anti-fatigue effect of the Auxis thazard oligopeptide via modulation of the AMPK/PGC-1α pathway in mice[J]. Food & Function,2022,13(3):1641-1650. [58] XIANG X, LANG M, LI Y, et al. Purification, identification and molecular mechanism of dipeptidyl peptidase Ⅳ inhibitory peptides from discarded shrimp (Penaeus vannamei) head[J]. Journal of Chromatography. B:Analytical Technologies in the Biomedical and Life Sciences,2021,1186:122990. [59] 李亚会,李积华,吉宏武,等.远东拟沙丁鱼抗氧化肽的分离纯化及结构解析[J].中国食品学报,2021,21(2):229-238. [60] ZHI T X, LI X Y, SADIQ F A, et al. Novel antioxidant peptides from protein hydrolysates of scallop (Argopecten irradians) mantle using enzymatic and microbial methods:preparation, purification, identification and characterization[J]. LWT,2022,164:113636. [61] JIANG W W, REN K Y, YANG Z Y, et al. Purification, identification and molecular docking of immunomodulatory peptides from the heads of Litopenaeus vannamei[J].Foods,2022,11(20):3309. [62] 中华人民共和国工业和信息化部.壳寡糖:QB/T 5503—2020[S].北京:中国轻工业出版社,2020:1-9. [63] 许丹,张小军,崔雪亮,等.一种海捕船渔获物超低温冷冻舱及冷冻方法:CN113883802B[P].2023-04-18. [64] 谢晶,王乃心,杨大章,等.一种船用双级压缩喷射跨临界CO2熟冻装置:CN212566365U[P].2021-02-19. [65] LI X, DING A Z, MEI S J, et al. Convolutional neural network-based fish posture classification[J].Complexity,2021,2021:9939688. [66] 薛倩倩,刘婉康,侯钰昆,等.433 MHz微波固态源工业化杀菌设备研发[C]// 中国食品科学技术学会第十八届年会摘要集.线上:中国食品科学技术学会,2022:278-279. |
|
|
|