|
|
A Review: Progress of MicroRNA Research on Adversity to Fish |
CHEN Yizhu, YANG Changxing, MA Wenwen, WANG Yue, FENG Mengxia, DONG Wenguang, WANG Xi, ZHANG Man, DONG Jing, GAO Yunni, GU Qianhong, ZHOU Chuanjiang |
Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Engineering Laborbatory of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang 453007, China |
|
|
|
Received: 11 December 2018
|
|
|
|
|
[1]Biswas S K, Lopez-Collazo E. Endotoxin tolerance: new mechanisms, molecules and clinical significance[J]. Trends in Immunology,2009,30(10):475-487. [2]Ci X X, Ren R, Xu K, et al. Schisantherin A exhibits anti-inflammatory properties by down-regulating NF-κB and MAPK signaling pathways in lipopolysaccharide-treated RAW 264.7 cells [J]. Inflammation,2010,33(2):126-136. [3]Karp X, Ambros V. Developmental biology. Encountering microRNAs in cell fate signaling[J]. Science,2005,310(5752):1288-1289. [4]Miska E A. How microRNAs control cell division, differentiation and death[J]. Current Opinion in Genetics & Development,2005,15(5):563-568. [5]Kloosterman W P, Plasterk R H A. The diverse functions of MicroRNAs in animal development and disease[J]. Developmental Cell,2006,11(4):441-450. [6]Bartel D P. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell,2004,116(2):281-297. [7]Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans[J]. Cell,1993,75(5):855-862. [8]Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell,1993,75(5):843-854. [9]Ambros V. MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing[J]. Cell,2003,113(6):673-676. [10]Ambros V, Lee R C, Lavanway A, et al. MicroRNAs and other tiny endogenous RNAs in C. elegans[J]. Current Biology,2003,13(10):807-818. [11]Pasquinelli A E, Reinhart B J, Slack F, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA[J]. Nature,2000,408(6808):86-89. [12]Reinhart B J, Slack F J, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing inCaenorhabditis elegans[J]. Nature,2000,403(6772):901-906. [13]Lim L P, Glasner M E, Yekta S, et al. Vertebrate microRNA genes[J]. Science,2003,299(5612):1540. [14]Xia J H, He X P, Bai Z Y, et al. Identification and characterization of 63 MicroRNAs in the Asian seabass Lates calcarifer[J]. PLoS One,2011,6(3):e17537. [15]Adai A, Johnson C, Mlotshwa S, et al. Computational prediction of miRNAs in Arabidopsis thaliana [J]. Genome Research,2005,15(1):78-91. [16]Salem M, Xiao C D, Womack J, et al. A microRNA repertoire for functional genome research in rainbow trout (Oncorhynchus mykiss)[J]. Marine Biotechnology,2010,12(4):410-429. [17]Li X, Ma J, Fang Q, et al. Transcription alterations of microRNAs, cytochrome P4501A1 and 3A65, and AhR and PXR in the liver of zebrafish exposed to crude microcystins[J]. Toxicon Official Journal of the International Society on Toxinology,2013,73(4):17-22. [18]Zhu Y P, Xue W, Wang J T, et al. Identification of common carp (Cyprinus carpio) microRNAs and microRNA-related SNPs[J]. BMC Genomics,2012,13(1):413. [19]Koscianska E, Witkos T M, Kozlowska E, et al. Cooperation meets competition in microRNA-mediated DMPK transcript regulation[J]. Nucleic Acids Research,2015,43(19):9500-9518. [20]Lagos-Quintana M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding for small expressed RNAs[J]. Science,2001,294(5543):853-858. [21]Lau N C, Lim L P, Weinstein E G, et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans [J]. Science,2001,294(5543):858-862. [22]Lagos-Quintana M, Rauhut R, Yalcin A, et al. Identification of tissue-specific microRNAs from mouse [J]. Current Biology,2002,12(9):735-739. [23]Barad O, Meiri E, Avniel A, et al. MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues [J]. Genome Research,2004,14(12):2486-2494. [24]Zeng Y P. Principles of micro-RNA production and maturation[J]. Oncogene,2006,25(46):6156-6162. [25]Beauchemin M, Smith A, Yin V P. Dynamic microRNA-101a and Fosab expression controls zebrafish heart regeneration[J]. Development,2015,142(23):4026-4037. [26]Ordas A, Kanwal Z, Lindenberg V, et al. MicroRNA-146 function in the innate immune transcriptome response of zebrafish embryos to Salmonella typhimurium, infection[J]. BMC Genomics,2013,14:696. [27]Zhao X, Chu Q, Cui J, et al. MicroRNA-19a as a negative regulator in TLR signaling pathway by direct targeting myeloid differentiation factor 88 in miiuy croaker[J]. Developmental & Comparative Immunology,2018,87:171-175. [28]Bartel B. MicroRNAs directing siRNA biogenesis[J]. Nature Structural & Molecular Biology,2005,12(7):569-571. [29]Giraldez A J, Cinalli R M, Glasner M E, et al. MicroRNAs regulate brain morphogenesis in zebrafish[J].Science,2005,308(5723):833-838. [30]Lee R C, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans[J]. Science,2001,294(5543):862-864. [31]Cannell I G, Kong Y W, Bushell M. How do microRNAs regulate gene expression[J]. Biochemical Society Transaction,2008,36(6):1224-1231. [32]Llave C, Xie Z X, Kasschau K D, et al. Cleavage of scarecrow-like mRNA targets directed by a class of arabidopsis miRNA[J]. Science,2002,297(5589):2053-2056. [33]Fu Y, Shi Z, Wu M, et al. Identification and differential expression of MicroRNAs during metamorphosis of the Japanese flounder (Paralichthys olivaceus)[J]. PLoS One,2011,6(7):e22957. [34]Bizuayehu T T, Babiak J, Norberg B, et al. Sex-biased miRNA expression in Atlantic halibut (Hippoglossus hippoglossus) brain and gonads[J]. Sexual Development,2012,6(5):257-266. [35]Esau C, Davis S, Murray S F, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting[J]. Cell Metabolism,2006,3(2):87-98. [36]Felli N, Fontana L, Pelosi E, et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation[J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(50):18081-18086. [37]Peter M E. Targeting of mRNAs by multiple miRNAs: the next step[J]. Oncogene,2010,29(15):2161-2164. [38]Biggar K K, Kornfeld S F, Maistrovski Y, et al. MicroRNA regulation in extreme environments: differential expression of MicroRNAs in the intertidal snail Littorina littorea during extended periods of freezing and anoxia[J]. Genomics, Proteomics & Bioinformatics,2012,10(5):302-309. [39]Biggar K K, Storey K B. Low-temperature microRNA expression in the painted turtle, Chrysemys picta during freezing stress[J]. FEBS Letters,2015,589(23):3665-3670. [40]Liu B, Che W L, Xue J S, et al. SIRT4 prevents hypoxia-induced apoptosis in H9c2 cardiomyoblast cells[J]. Cellular Physiology and Biochemistry,2013,32(3):655-662. [41]Zhao M, Sun L, Yu X J, et al. Acetylcholine mediates AMPK-dependent autophagic cytoprotection in H9c2 cells during hypoxia/reoxygenation injury[J]. Cellular Physiology and Biochemistry,2013,32(3):601-613. [42]Mandic M, Todgham A E, Richards J G. Mechanisms and evolution of hypoxia tolerance in fish[J]. Proceedings Biological Sciences,2009,276(1657):735-744. [43]Richards J G. Physiological, behavioral and biochemical adaptations of intertidal fishes to hypoxia[J]. Journal of Experimental Biology,2011,214(2):191-199. [44]Du W, Pan Z, Chen X, et al. By targeting Stat3 microRNA-17-5p promotes cardiomyocyte apoptosis in response to ischemia followed by reperfusion[J]. Cellular Physiology and Biochemistry,2014,34(3):955-965. [45]Cheng Y H, Liu X J, Zhang S, et al. MicroRNA-21 protects against the H2O2-induced injury on cardiac myocytes via its target gene PDCD4[J]. Journal of Molecular & Cellular Cardiology,2009,47(1):5-14. [46]Hou Z, Li X, Yu L, et al. MicroRNA-146a is down-regulated in gastric cancer and regulates cell proliferation and apoptosis[J]. Medical Oncology,2012,29(2):886-892. [47]Zhang C Z, Zhang J X, Zhang A L, et al. MiR-221 and miR-222 target PUMA to induce cell survival in glioblastoma[J]. Molecular Cancer,2010,9(1):229. [48]Xu Y, Zhu W, Wang Z, et al. Combinatorial MicroRNAs suppress hypoxia-induced cardiomyocytes apoptosis[J]. Cellular Physiology and Biochemistry,2015,37(3):921-932. [49]Matsusaka H, Ide T, Matsushima S, et al. Targeted deletion of p53 prevents cardiac rupture after myocardial infarction in mice[J]. Cardiovascular Research,2006,70(3):457-465. [50]Wang X, Ha T, Zou J, et al. MicroRNA-125b protects against myocardial ischaemia/reperfusion injury via targeting p53-mediated apoptotic signalling and TRAF6[J]. Cardiovascular Research,2014,102(3):385-395. [51]Nallamshetty S, Chan S Y, Loscalzo J. Hypoxia: a master regulator of microRNA biogenesis and activity[J]. Free Radical Biology & Medicine,2013,64(5):20-30. [52]Camps C, Saini H K, Mole D R, et al. Integrated analysis of microRNA and mRNA expression and association with HIF binding reveals the complexity of microRNA expression regulation under hypoxia[J]. Molecular Cancer,2014,13(1):28. [53]Poss K D, Wilson L G, Keating M T. Heart regeneration in zebrafish[J]. Science,2002,298(5601):2188-2190. [54]González-Rosa J M, Mercader N. Cryoinjury as a myocardial infarction model for the study of cardiac regeneration in the zebrafish[J]. Nature Protocols,2012,7(4):782-788. [55]Kikuchi K, Holdway J E, Werdich A A, et al. Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes[J]. Nature,2010,464(7288):601-605. [56]Jopling C, Sleep E, Raya M, et al. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation[J]. Nature,2010,464(7288):606-609. [57]Zhang R, Han P, Yang H, et al. In vivo cardiac reprogramming contributes to zebrafish heart regeneration[J]. Nature,2013,498(7455):497-501. [58]Puente B N, Kimura W, Muralidhar S A, et al. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response[J]. Cell,2014,157(3):565-579. [59]Yu Y M, Gibbs K M, Davila J, et al. MicroRNA miR-133b is essential for functional recovery after spinal cord injury in adult zebrafish[J]. The European Journal of Neuroscience,2011,33(9):1587-1597. [60]Zhou Z, Lin Z, Pang X, et al. MicroRNA regulation of Toll-like receptor signaling pathways in teleost fish[J]. Fish & Shellfish Immunology,2018,75:32-40. [61]Li G, Zhao Y, Wen L, et al. Identification and characterization of microRNAs in the spleen of common carp immune organ[J]. Journal of Cellular Biochemistry,2014,115(10):1768-78. [62]Xia J H, Yue G H. Identification and analysis of immune-related transcriptome in Asian seabass Lates calcarifer[J]. BMC Genomics,2010,11(1):1-12. [63]Zhao L, Lu H, Meng Q, et al. Profilings of MicroRNAs in the liver of common carp (Cyprinus carpio) infected with Flavobacterium columnare[J]. International Journal of Molecular Sciences,2016,17(4):566. [64]Xu T, Chu Q, Cui J, et al. MicroRNA-216a inhibits NF-κB-mediated inflammatory cytokine production in teleost fish by modulating p65[J]. Infection and Immunity,2018,86(6):IAI.00256-18. [65]Xu T, Chu Q, Cui J, et al. The inducible microRNA-203 in fish represses the inflammatory responses to Gram-negative bacteria by targeting IL-1 receptor-associated kinase 4[J]. The Journal of Biological Chemistry,2018,293(4):1386-1396. [66]Brzuzan P, Woź ny M, Wolińska L, et al. Expression profiling in vivo demonstrates rapid changes in liver microRNA levels of whitefish (Coregonus lavaretus) following microcystin-LR exposure[J]. Aquatic Toxicology,2012,122/123:188-196. [67]Lakomiak A, Brzuzan P, Jakimiuk E, et al. miR-34a and bcl-2 expression in whitefish (Coregonus lavaretus) after microcystin-LR exposure[J]. Comparative Biochemistry and Physiology. Part B, Biochemistry and Molecular Biology,2015,193:47-56. [68]Wang L, Bammler T K, Beyer R P, et al. Copper-induced deregulation of microRNA expression in the zebrafish olfactory system[J]. Environmental Science & Technology,2013,47(13):7466-7474. [69]Li H, Kloosterman W, Fekete D M. MicroRNA-183 family members regulate sensorineural fates in the inner ear[J]. Journal of Neuroscience,2010,30(9):3254-3263. [70]Schlotman K. An epigenetic look at atrazine toxicity: an analysis of MicroRNA-126 expression in developing zebrafish exposed to the herbicide atrazine[J]. Journal of Purdue Undergraduate Research,2014,4:48-57. [71]Nicoli S, Standley C, Walker P, et al. MicroRNA-mediated integration of haemodynamics and Vegf signalling during angiogenesis[J]. Nature,2010,464(7292):1196-1200. [72]Zhou Y, Huang H, Zhang K, et al. miRNA-216 and miRNA-499 target cyb561d2 in zebrafish in response to fipronil exposure[J]. Environmental Toxicology and Pharmacology,2016,45:98-107. [73]Wang X, Zhou S, Ding X, et al. Effect of triazophos, fipronil and their mixture on miRNA expression in adult zebrafish[J]. Journal of Environmental Science and Health Part B,2010,45(7):648-657. [74]Nam H S, Hwang K S, Jeong Y M, et al. Corrigendum to “expression of miRNA-122 induced by liver toxicants in zebrafish”[J]. BioMed Research International,2017,2017:1347806. [75]Khayrullin A, Smith L, Mistry D, et al. Chronic alcohol exposure induces muscle atrophy (myopathy) in zebrafish and alters the expression of microRNAs targeting the Notch pathway in skeletal muscle[J]. Biochemical and Biophysical Research Communications,2016,479(3):590-595. [76]Ignacio C, Hicks S D, Burke P, et al. Alterations in serum microRNA in humans with alcohol use disorders impact cell proliferation and cell death pathways and predict structural and functional changes in brain[J]. BMC Neuroscience,2015,16(1):55. [77]Sun Y, Han J, Chu Q, et al. MicroRNA-210 participates in regulating RIG-I signaling pathway via targeting DUBA in miiuy croaker after poly(I:C) stimulation[J]. Fish & Shellfish Immunology,2018,77:1-7. [78]Dybing E, Sanner T. Risk assessment of acrylamide in foods[J]. Toxicological Sciences,2003,75(1):7-15. [79]王菊,赵建军,马旭.丙烯酰胺对斑马鱼胎胚发育过程中microRNA表达的影响[J]. 毒理学杂志,2007,21(3):169-172. [80]Zhang L, Li Y Y, Zeng H C, et al. MicroRNA expression changes during zebrafish development induced by perfluorooctane sulfonate[J]. Journal of Applied Toxicology,2011,31(3):210-222. [81]Jenny M J, Aluru N, Hahn M E. Effects of short-term exposure to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin on microRNA expression in zebrafish embryos[J]. Toxicology and Applied Pharmacology,2012,264(2):262-273. |
|
|
|