|
|
Application of Bacteriophages in Biofilm Control of Pathogenic and Spoiling Bacteria from Fishery Product |
LI Meng1,2,3, MA Yongsheng1,2, LI Ying1,2, ZHAO Qiancheng1,2,3 |
1. College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; 2. Liaoning Provincial Aquatic Products Analyzing, Testing and Processing Technology Scientific Service Centre, Dalian 116023, China; 3. Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China |
|
[1]农业农村部渔业渔政管理局.2019中国渔业统计年鉴[M].北京:中国农业出版社,2019. [2]吴燕燕,李凤霞,李来好.水产品病原菌及其检测与控制技术研究进展[J].微生物学通报,2009,36(1):113-119. [3]Hall-Stoodley L, Costerton J W, Stoodley P. Bacterial biofilms:from the natural environment to infectious diseases[J].Nature Reviews.Microbiology,2004,2(2):95-108. [4]吕阳,尹平,Mohamed K M,等.噬菌体在食品安全控制中的研究进展[J].食品科学,2018,39(15):240-246. [5]Sillankorva S M, Oliveira H, Azeredo J. Bacteriophages and their role in food safety[J].International Journal of Microbiology,2012,2012:863945. [6]Nannapaneni R, Soni K A. Use of bacteriophages to remove biofilms of Listeria monocytogenes and other foodborne bacterial pathogens in the food environment[M]// Pometto Ⅲ A L, Demirci A. Biofilms in the Food Environment. Chichester, UK:John Wiley & Sons, Ltd,2015:131-144. [7]Schmelcher M, Donovan D M, Loessner M J. Bacteriophage endolysins as novel antimicrobials[J].Future Microbiology,2012,7(10):1147-1171. [8]Gutiérrez D, Vandenheuvel D, Martínez B, et al. Two phages, phiIPLA-RODI and phiIPLA-C1C, lyse mono- and dual-species staphylococcal biofilms[J].Applied and Environmental Microbiology,2015,81(10):3336-3348. [9]Srey S, Jahid I K, Ha S D. Biofilm formation in food industries:a food safety concern[J].Food Control,2013,31(2):572-585. [10]Phillips C A. Bacterial biofilms in food processing environments:a review of recent developments in chemical and biological control[J].International Journal of Food Science & Technology,2016,51(8):1731-1743. [11]Gutiérrez D, Rodríguez-Rubio L, Martínez B, et al. Bacteriophages as weapons against bacterial biofilms in the food industry[J].Frontiers in Microbiology,2016,7:825. [12]吕芸辉,全心馨,沈梦溪,等.噬菌体及其裂解酶对细菌生物被膜作用的研究进展[J].微生物学通报,2015,42(3):568-573. [13]Mizan M F R, Jahid I K, Ha S D. Microbial biofilms in seafood:a food-hygiene challenge[J].Food Microbiology,2015,49:41-55. [14]励建荣,杨兵,李婷婷.水产品优势腐败菌及其群体感应系统研究进展[J].食品科学,2015,36(19):255-259. [15]Fernández-Delgado M, Rojas H, Duque Z, et al. Biofilm formation of Vibrio cholerae on stainless steel used in food processing[J].Revista do Instituto de Medicina Tropical de Sao Paulo,2016,58:47. [16]Waters C M, Lu W Y, Rabinowitz J D, et al. Quorum sensing controls biofilm formation in Vibrio cholerae through modulation of cyclic di-GMP levels and repression of vpsT[J].Journal of Bacteriology,2008,190(7):2527-2536. [17]叶晓敏,陆春.霍乱弧菌群体感应系统影响生物膜形成的研究进展[J].微生物学杂志,2010,30(1):80-83. [18]Frischkorn K R, Stojanovski A, Paranjpye R. Vibrio parahaemolyticus type IV pili mediate interactions with diatom-derived chitin and point to an unexplored mechanism of environmental persistence[J].Environmental Microbiology,2013,15(5):1416-1427. [19]Aagesen A M, Phuvasate S, Su Y C, et al. Persistence of Vibrio parahaemolyticus in the Pacific oyster, Crassostrea gigas, is a multifactorial process involving pili and flagella but not type Ⅲ secretion systems or phase variation[J].Applied and Environmental Microbiology,2013,79(10):3303-3305. [20]Vezzulli L, Pezzati E, Repetto B, et al. A general role for surface membrane proteins in attachment to chitin particles and copepods of environmental and clinical vibrios[J].Letters in Applied Microbiology,2008,46(1):119. [21]陈珍,覃映雪,邹文政,等.致病性副溶血弧菌生物膜形成特性研究[J].海洋学报,2010,32(5):110-116. [22]Joseph L A, Wright A C. Expression of Vibrio vulnificus capsular polysaccharide inhibits biofilm formation[J].Journal of Bacteriology,2004,186(3):889-893. [23]刘倩倩,申洪.创伤弧菌金属蛋白酶的研究进展[J].微生物学免疫学进展,2009,37(4):66-69. [24]McDougald D, Lin W H, Rice S A, et al. The role of quorum sensing and the effect of environmental conditions on biofilm formation by strains of Vibrio vulnificus[J].Biofouling,2006,22(3/4):133-144. [25]Kim H S, Lee M A, Chun S J, et al. Role of NtrC in biofilm formation via controlling expression of the gene encoding an ADP-glycero-manno-heptose-6-epimerase in the pathogenic bacterium, Vibrio vulnificus[J].Molecular Microbiology,2007,63(2):559-574. [26]Park J H, Lee B, Jo Y, et al. Role of extracellular matrix protein CabA in resistance of Vibrio vulnificus biofilms to decontamination strategies[J].International Journal of Food Microbiology,2016,236:123-129. [27]Lynch M J, Swift S, Kirke D F, et al. The regulation of biofilm development by quorum sensing in Aeromonas hydrophila[J].Environmental Microbiology,2002,4(1):18-28. [28]Whiteley M, Brown E, McLean R J C. An inexpensive chemostat apparatus for the study of microbial biofilms[J].Journal of Microbiological Methods,1997,30(2):125-132. [29]Jahid I K, Han N, Ha S D. Inactivation kinetics of cold oxygen plasma depend on incubation conditions of Aeromonas hydrophila biofilm on lettuce[J].Food Research International,2014,55:181-189. [30]毛秀秀,覃映雪,邹文政,等.致病性嗜水气单胞菌生物膜的形成特性[J].中国水产科学,2011,18(2):371-378. [31]王虎虎,李诺,李韵晗,等.沙门氏菌生物菌膜的结构特征及在食品接触面的转移[J].核农学报,2015,29(12):2313-2319. [32]Vestby L K, Møretrø T, Langsrud S, et al. Biofilm forming abilities of Salmonella are correlated with persistence in fish meal- and feed factories[J].BMC Veterinary Research,2009,5:20. [33]Steenackers H, Hermans K, Vanderleyden J, et al. Salmonella biofilms:an overview on occurrence, structure, regulation and eradication[J].Food Research International,2012,45(2):502-531. [34]Stepanović S, Ćirković I, Ranin L, et al. Biofilm formation by Salmonella spp. and Listeria monocytogenes on plastic surface[J].Letters in Applied Microbiology,2004,38(5):428-432. [35]Mai T L, Conner D E. Effect of temperature and growth media on the attachment of Listeria monocytogenes to stainless steel[J].International Journal of Food Microbiology,2007,120(3):282-286. [36]柯春林,方维焕.单增李斯特菌生物膜及其形成机制的研究进展[J].中国微生态学杂志,2011,23(6):574-576. [37]Bagge D, Hjelm M, Johansen C, et al. Shewanella putrefaciens adhesion and biofilm formation on food processing surfaces[J].Applied and Environmental Microbiology,2001,67(5):2319-2325. [38]刘娜娜.腐败希瓦氏菌致腐相关基因分析及群体感应信号分子对其调控作用的研究[D].杭州:浙江工商大学,2015:15-28. [39]Masák J, Čejková A, Schreiberová O, et al. Pseudomonas biofilms:possibilities of their control[J].FEMS Microbiology Ecology,2014,89(1):1-14. [40]Xie J, Sun X H, Pan Y J, et al. Combining basic electrolyzed water pretreatment and mild heat greatly enhanced the efficacy of acidic electrolyzed water against Vibrio parahaemolyticus on shrimp[J].Food Control,2012,23(2):320-324. [41]Mizan M F R, Jahid I K, Kim M, et al. Variability in biofilm formation correlates with hydrophobicity and quorum sensing among Vibrio parahaemolyticus isolates from food contact surfaces and the distribution of the genes involved in biofilm formation[J].Biofouling,2016,32(4):497-509. [42]Chung C H, Fen S Y, Yu S C, et al. Influence of oxyR on growth, biofilm formation, and mobility of Vibrio parahaemolyticus[J].Applied and Environmental Microbiology,2015,82(3):788-796. [43]黄倩,张义全,胡小许,等.AphA蛋白促进副溶血弧菌c-di-GMP合成和生物膜形成[J].微生物学报,2014,54(5):525-531. [44]Gopal S, Otta S K, Kumar S, et al. The occurrence of Vibrio species in tropical shrimp culture environments: implications for food safety[J].International Journal of Food Microbiology,2005,102(2):151-159. [45]Warner E, Oliver J D. Population structures of two genotypes of Vibrio vulnificus in oysters (Crassostrea virginica) and seawater[J].Applied and Environmental Microbiology,2008,74(1):80-85. [46]Ji H, Chen Y, Guo Y C, et al. Occurrence and characteristics of Vibrio vulnificus in retail marine shrimp in China[J].Food Control,2011,22(12):1935-1940. [47]Lee K J, Kim J A, Hwang W, et al. Role of capsular polysaccharide (CPS) in biofilm formation and regulation of CPS production by quorum-sensing in Vibrio vulnificus[J].Molecular Microbiology,2013,90(4):841-857. [48]Edberg S C, Browne F A, Allen M J. Issues for microbial regulation:Aeromonas as a model[J].Critical Reviews in Microbiology,2007,33(1):89-100. [49]Jahid I K, Lee N Y, Kim A, et al. Influence of glucose concentrations on biofilm formation, motility, exoprotease production, and quorum sensing in Aeromonas hydrophila[J].Journal of Food Protection,2013,76(2):239-247. [50]Jallewar P K, Kalorey D R, Kurkure N V, et al. Genotypic characterization of Listeria spp. isolated from fresh water fish[J].International Journal of Food Microbiology,2007,114(1):120-123. [51]Jami M, Ghanbari M, Zunabovic M, et al. Listeria monocytogenes in aquatic food products—a review[J].Comprehensive Reviews in Food Science and Food Safety,2014,13(5):798-813. [52]Takahashi H, Miya S, Igarashi K, et al. Biofilm formation ability of Listeria monocytogenes isolates from raw ready-to-eat seafood[J].Journal of Food Protection,2009,72(7):1476-1480. [53]Keskinen L A, Todd E C D, Ryser E T. Impact of bacterial stress and biofilm-forming ability on transfer of surface-dried Listeria monocytogenes during slicing of delicatessen meats[J].International Journal of Food Microbiology,2008,127(3):298-304. [54]Guðbjórnsdóttir B, Einarsson H, Thorkelsson G. Microbial adhesion to processing lines for fish fillets and cooked shrimp: influence of stainless steel surface finish and presence of gram-negative bacteria on the attachment of Listeria monocytogenes[J]. Food Technology & Biotechnology,2005,43(1):55-61. [55]Pires D P, Oliveira H, Melo L D R, et al. Bacteriophage-encoded depolymerases:their diversity and biotechnological applications[J].Applied Microbiology and Biotechnology,2016,100(5):2141-2151. [56]孙卫忠,胡晓梅,胡福泉.噬菌体内溶素的酶学特性及其应用前景[J].生命的化学,2007,27(1):94-97. [57]Pérez-Rodríguez F, Valero A, Carrasco E, et al. Understanding and modelling bacterial transfer to foods:a review[J].Trends in Food Science & Technology,2008,19(3):131-144. [58]Luo Z H, Yu Y P, Jost G, et al. Characterization of two bacteriophages for specific treatment of biofilm formed by a Vibrio sp.isolated from an abalone farm[J].Aquaculture Research,2016,47(12):3964-3972. [59]Woolston J, Parks A R, Abuladze T, et al. Bacteriophages lytic for Salmonella rapidly reduce Salmonella contamination on glass and stainless steel surfaces[J].Bacteriophage,2013,3(3):e25697. [60]Ferreira A A, Mendonça R C S, Hungaro H M, et al. Bacteriophages actions on Salmonella enteritidis biofilm[G]//Mendez-Vilas A. Science and technology against microbial pathogens research, development and evaluation.Valladolid, Spain:World Scientific,2011:135-139. [61]Karaca B, Akcelik M, Taskale Karatug N, et al. The efficacy of P22 bacteriophage as a method of Salmonella typhimurium biofilm eradication[C]. Berlin, Germany:23rd ECCMID Congress,2013. [62]de Ornellas Dutka Garcia K C, de Oliveira Corrêa I M, Pereira L Q, et al. Bacteriophage use to control Salmonella biofilm on surfaces present in chicken slaughterhouses[J].Poultry Science,2017,96(9):3392-3398. [63]Oliveira H, Thiagarajan V, Walmagh M, et al. A thermostable Salmonella phage endolysin, Lys68, with broad bactericidal properties against gram-negative pathogens in presence of weak acids[J].PLoS One,2014,9(10):e108376. [64]Ganegama Arachchi G J, Cridge A G, Dias-Wanigasekera B M, et al. Effectiveness of phages in the decontamination of Listeria monocytogenes adhered to clean stainless steel, stainless steel coated with fish protein, and as a biofilm[J].Journal of Industrial Microbiology & Biotechnology,2013,40(10):1105-1116. [65]Soni K A, Nannapaneni R. Removal of Listeria monocytogenes biofilms with bacteriophage P100[J].Journal of Food Protection,2010,73(8):1519-1524. [66]Montañez-Izquierdo V Y, Salas-Vázquez D I, Rodríguez-Jerez J J. Use of epifluorescence microscopy to assess the effectiveness of phage P100 in controlling Listeria monocytogenes biofilms on stainless steel surfaces[J].Food Control,2012,23(2):470-477. [67]Sharma M, Ryu J H, Beuchat L R. Inactivation of Escherichia coli O157:H7 in biofilm on stainless steel by treatment with an alkaline cleaner and a bacteriophage[J].Journal of Applied Microbiology,2005,99(3):449-459. [68]Viazis S, Akhtar M, Feirtag J, et al. Reduction of Escherichia coli O157:H7 viability on hard surfaces by treatment with a bacteriophage mixture[J].International Journal of Food Microbiology,2011,145(1):37-42. [69]Ryan E M, Alkawareek M Y, Donnelly R F, et al. Synergistic phage-antibiotic combinations for the control of Escherichia coli biofilms in vitro[J].FEMS Immunology and Medical Microbiology,2012,65(2):395-398. [70]Sillankorva S, Oliveira R, Vieira M J, et al. Real-time quantification of Pseudomonas fluorescens cell removal from glass surfaces due to bacteriophage varphiS1 application[J].Journal of Applied Microbiology,2008,105(1):196-202. [71]Sillankorva S, Neubauer P, Azeredo J. Pseudomonas fluorescens biofilms subjected to phage phiIBB-PF7A[J].BMC Biotechnology,2008,8(1):79. [72]Cornelissen A, Ceyssens P J, T′Syen J, et al. The T7-related Pseudomonas putida phage φ15 displays virion-associated biofilm degradation properties[J].PLoS One,2011,6(4):e18597. [73]Meng X P, Shi Y B, Ji W H, et al. Application of a bacteriophage lysin to disrupt biofilms formed by the animal pathogen Streptococcus suis[J].Applied and Environmental Microbiology,2011,77(23):8272-8279. [74]Domenech M, García E, Moscoso M. In vitro destruction of Streptococcus pneumoniae biofilms with bacterial and phage peptidoglycan hydrolases[J].Antimicrobial Agents and Chemotherapy,2011,55(9):4144-4148. [75]Yang H, Zhang Y, Huang Y L, et al. Degradation of methicillin-resistant Staphylococcus aureus biofilms using a chimeric lysin[J].Biofouling,2014,30(6):667-674. [76]Li M, Li M Z, Lin H, et al. Characterization of the novel T4-like Salmonella enterica bacteriophage STP4-a and its endolysin[J].Archives of Virology,2016,161(2):377-384. [77]Merabishvili M, Vervaet C, Pirnay J P, et al. Stability of Staphylococcus aureus phage ISP after freeze-drying (lyophilization)[J].PLoS One,2013,8(7):e68797. [78]Hambsch B, Bńsl M, Eberhagen I, et al. Removal of bacteriophages with different surface charges by diverse ceramic membrane materials in pilot spiking tests[J].Water Science and Technology,2012,66(1):151-157. [79]Boratyński J, Syper D, Weber-Dabrowska B, et al. Preparation of endotoxin-free bacteriophages[J].Cellular & Molecular Biology Letters,2004,9(2):253-259. [80]Nobrega F L, Costa A R, Kluskens L D, et al. Revisiting phage therapy:new applications for old resources[J].Trends in Microbiology,2015,23(4):185-191. |
|
|
|