|
|
Nitrite and Ammonia Removal Patterns of 6 Species or Genera of Microalgae Exposed to Mixed Inorganic Nitrogen |
GOU Wanli1, LI Ziying2, WU Xinhua2, WEN Shuangxi1, YANG Zhi1 |
1. College of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China; 2. Qingdao Vland Biotech Incorporation, Qingdao 266000, China |
|
|
Abstract The nitrite and ammonia removal patterns of 6 microalgal species or genera, including 3 diatoms, and 3 members in chlorophyto were primarily studied by analyzing the variation trend of cell density, nitrite concentration, and the ammonia concentration in the modified F/2 medium whose nitrogen source was the mixture of ammonia, nitrate and nitrite. The results showed that all microalgae grew very well and completed a whole growth cycle. In the initial stage of the growth cycle (2—3 d), each strain removed above 95% of the ammonia, with the maximal relative removal rate of 0.999 mg/(L·d) in Pyramimonas sp. KDN21 and the minimal relative removal rate of 0.639 mg/(L·d) in Amphora sp. KDN17. Most strains slowly removed a little nitrite (lower than 35%) during this stage, and their relative removal rates were not exceed 0.035 mg/(L·d); Amphora sp. KDN17 was the only microalga which sharply removed up to 65% of the nitrite, with relative removal rate of 0.322 mg/(L·d). In the middle to late stages of the growth cycle (3—6 d), their relative removal rates were lower than 0.020 mg/(L·d), although removed almost all NH+4-N, all strains still removed a little nitrite. These findings indicated that the majority of microalga grew on the mixture inorganic nitrogen sources composed of ammonia, nitrate and nitrite removed massive ammonia, but a little nitrite. Amphora sp. KDN17 was the only one which removed massive ammonia and nitrite simultaneously, so as a probable candidate strain for controlling the water ammonia and nitrite concentration.
|
Received: 22 March 2019
|
|
|
|
|
[1]傅雪军,马绍赛,曲克明,等. 循环水养殖系统生物挂膜的消氨效果及影响因素分析[J]. 渔业科学进展,2010,31(1):95-99. [2]冼健安,张秀霞,郭慧,等. 亚硝酸盐胁迫对罗氏沼虾血细胞及其抗氧化酶活力的影响[J]. 生物安全学报,2016,25(4):300-307. [3]Bucking C. A broader look at ammonia production, excretion, and transport in fish:a review of impacts of feeding and the environment [J]. Journal of Comparative Physiology B—Biochemical Systemic and Environmental Physiology,2017,187(1):1-18. [4]da Costa O T F, dos Santos Ferreira D J, Lo Presti Mendonca F, et al. Susceptibility of the Amazonian fish, Colossoma macropomum (Serrasalminae), to short-term exposure to nitrite [J]. Aquaculture,2004,232(1/2/3/4):627-636. [5]薛静怡,宗雅丽,侯玉,等. 水产养殖中亚硝酸盐毒性影响及处理的研究进展[J]. 渔业研究,2017,39(4):320-324. [6]高光明,叶德元. 浅谈池塘水质与调控[J]. 科学养鱼,2006(10):79. [7]冼健安,钱坤,郭慧,等. 氨氮对虾类毒性影响的研究进展[J]. 饲料工业,2014,35(22):52-58. [8]卢岩. 一种新型亚硝酸根离子去除剂——亚硝酸螯合剂(BRT)[J]. 中国水产,2004(2):48-49. [9]陈佳毅,孙龙生,吴骏,等. 氨氮和亚硝氮对不同发育阶段罗氏沼虾幼体的急性毒性研究[J]. 水产养殖,2015,36(10):1-6. [10]黄翔鹄,李活,李长玲,等. 牟氏角毛藻对对虾育苗水质及抗逆性的影响[J]. 广东海洋大学学报,2008,28(6):46-50. [11]刘盼,贾成霞,杨慕,等. 2种微藻对养殖水体中氨氮和亚硝态氮的净化作用[J]. 水产科学,2018,37(3):389-393. [12]石峰,魏晓雪,冯剑丰,等. 不同无机氮条件下一种硅藻的氮吸收动力学及模型预测分析[J]. 农业环境科学学报,2018,37(9):1833-1841. [13]王倩雅,罗舒怀,张莹,等. 不同初始氮浓度下尖状栅藻同化硝态氮和CO2的研究[J]. 植物科学学报,2017,35(4):583-591. [14]Ohmori M, Ohmori K, Strotmann H. Inhibition of nitrate uptake by ammonia in a blue-green alga,Anabaena cylindrica [J]. Archives of Microbiology,1977,114(3):225-229 [15]包苑榆,钟萍,韦桂峰,等. 基于15N稳定同位素技术的斜生栅藻对硝氮和氨氮吸收研究[J]. 水生态学杂志,2011,32(3):16-20. [16]Dortch Q. The interaction between ammonium and nitrate uptake in phytoplankton [J]. Marine Ecology Progress Series,1990,61:183-201. [17]Guerrero M G, Vega J M, Losada M. The assimilatory nitrate reducing system and its regulation [J]. Annual Review of Plant Physiology,1981,32(1):169-204. [18]胡章喜,徐宁,段舜山. 不同氮源对 4 种海洋微藻生长的影响[J]. 生态环境学报,2010,19(10):2452-2457. [19]Eppley R W, Coatsworth J L. Uptake of nitrate and nitrite by Ditylum brightwellii-kinetics and mechanisms [J]. Journal of Phycology,1968,4(2):151-156. [20]张桐雨,唐选盼,李洪武,等. 小球藻和双眉藻对虾塘养殖废水氮、磷的去除效果[J]. 广东农业科学,2013,40(18):169-171. [21]马红芳,李鑫,胡洪营,等. 栅藻LX1在水产养殖废水中的生长、脱氮除磷和油脂积累特性[J]. 环境科学,2012,33(6):1891-1896. [22]刘梅,原居林,何海生,等. 微藻在南美白对虾养殖废水中的生长及净化效果[J]. 应用与环境生物学报,2018,24(4):866-872. [23]Guillard R R, Ryther J H. Studies of marine plank-tonic diatoms. Ⅰ. Cyclotella nana Hustedt, and Detonula confervacea (cleve) gran [J]. Canadian Journal of Microbiology,1962,8:229-239. [24]詹晓燕,刘臣辉,范海燕,等. 水体中氨氮测定方法的比较——纳氏试剂光度法、靛酚蓝比色法[J]. 环境科学与管理,2010,35(11):132-135. [25]国家环境保护局规划标准处. GB 7493—1987,水质 亚硝酸盐氮的测定 分光光度法[S]. 北京:中国标准出版社,1987. [26]王兰. 环境微生物学实验方法与技术[M]. 2版. 北京:化学工业出版社,2016:70-72. [27]赵志刚,罗亮,王常安,等. 不同鲤养殖模式生物絮团系统中鱼体的生长及水质[J]. 水产学报,2017,41(1):99-108. [28]刘健,侯冬伟,曾燊正,等. 凡纳滨对虾封闭式养殖池塘水体氨氮、亚硝氮、硝氮变化规律及消减措施[J]. 中山大学学报:自然科学版,2017,56(6):116-122. [29]Lin Y C, Chen J C. Acute toxicity of nitrite on Litopenaeus vannamei (Boone) juveniles at different salinity levels [J]. Aquaculture,2003,224(1/2/3/4):193-201. [30]高明辉,马立保,葛立安,等. 亚硝酸盐在水生动物体内的吸收机制及蓄积的影响因素[J]. 南方水产,2008,4(4):73-79. [31]肖焱波,李文学,段宗颜,等. 植物对硝态氮的吸收及其调控 [J].中国农业科技导报,2002,4(2):56-59. [32]Chen W, Zhang Q, Dai S. Effects of nitrate on intracellular nitrite and growth of Microcystis aeruginosa [J]. Journal of Applied Phycology,2009,21(6):701-706. |
|
|
|